Matemātika
DU TSC
Nākamais: 2.4. Integrējamu funkciju klases
Augstāk: 2. NOTEIKTAIS INTEGRĀLIS
Iepriekšējais: 2.2. Darbū summas un to īpašības
-
2.2. teorēma.
- Intervālā definēta un ierobežota funkcija
ir integrējama šajā intervālā tad un tikai tad, ja jebkuram
eksistē tāds , ka visiem
sasmalcinājumiem ar soli
izpildās
nevienādība
.
Nepieciešamība. Tā kā funkcija -
integrējama intervālā , tad eksistē galīga robeža
Pamatojoties uz šādas robežas definīciju, jebkuram
eksistē tāds , ka visiem sasmalcinājumiem ar
soli
izpildās nevienādība
|
(2.3) |
Fiksē vienu tādu intervāla sasmalcinājumu, kuram izpildās
nevienādība (2.3). Šim intervāla
sasmalcinājumam atbilstošās Darbū summas apzīmē ar un . Pēc
Darbū summu 2. īpašības starppunktus var
izvēlēties tā, lai izpildās nevienādības
|
(2.4) |
un
|
(2.5) |
Nevienādība (2.3) izpildās arī integrālsummām
un .
Apskata
Tādējādi
|
(2.6) |
Pietiekamība. Pēc dotā jebkuram
eksistē tāds
, ka visiem intervāla sasmalcinājumiem ar soli
izpildās nevienādība (2.6).
Pēc Darbū summu 6. īpašības
|
(2.7) |
Apskata
.
Tātad nenegatīvā konstante
ir pēc patikas
maza. Seko, ka šī konstante ir nulle jeb
.
Tāpēc nevienādība (2.7) izskatās šādi:
|
(2.8) |
Pēc Darbū summu 1. īpašības
|
(2.9) |
No nevienādības (2.8) atņemot nevienādību
(2.9), iegūst nevienādību
jeb
|
(2.10) |
Nevienādība (2.10) ir ekvivalenta nevienādībai
Tā kā
, tad
.
Seko, ka
.
Tātad funkcija ir integrējama intervālā .
-
2.5. piezīme.
- No 2.2. teorēmas izriet, ka vienādība
ir funkcijas integrējamības
intervālā nepieciešamais un pietiekamais nosacījums.
Matemātika
DU TSC
Nākamais: 2.4. Integrējamu funkciju klases
Augstāk: 2. NOTEIKTAIS INTEGRĀLIS
Iepriekšējais: 2.2. Darbū summas un to īpašības
2002-11-06