A semigroup of integers and its connection with points on a circle

Grigorii Melnichenko, gmelnicenko@gmail.com Vilnius Pedagogical University

Any number $m^{3} 0$ it is possible to present as the sum of two squares. Indeed, let M be a point on a circle of the radius $r=\sqrt{m}$, then $m=a^{2}+b^{2}$, where a, b are the coordinates of the point M. If a and a are integers, then the number $m=a^{2}+b^{2}$ is integer. A set of the integers, which are representable as the sum of two squares is a commutative semigroup, which we denote by S. It is follows from formula

$$
\left(a^{2}+b^{2}\right)\left(c^{2}+d^{2}\right)=(a c-b d)^{2}+(a d+b c)^{2} .
$$

The integer of the form $a=a^{2}+b^{2}$, we name by S number and we say that the S-number $a=a^{2}+b^{2}$ and $b=c^{2}+d^{2}$ are equal if $a=b$ and $c=d$. The numbers $50=5^{2}+5^{2}$ and $50=1^{2}+7^{2}$ are equal as usual numbers, but they not equal as S -numbers.
S-numbers $1_{\mathrm{S}}=1^{2}+0^{2},-1_{\mathrm{S}}=(-1)^{2}+0^{2}, i_{\mathrm{S}}=0^{2}+1^{2}$, $=i_{S}=0^{2}+(-1)^{2}$ form a unique group in S. We have $\left(-1_{\mathrm{s}}\right)^{2}=\left(-1_{\mathrm{s}}\right)$ and $\left(i_{\mathrm{s}}\right)^{2}=-\left(i_{\mathrm{s}}\right)$. So we accept 1_{S} as unit and i_{S} as imaginary unit of S . It is natural to consider the theory of divisibility of the S -numbers. Hence, we need to understand which S -numbers are prime, and which are composite. It is interesting also to find an analogue of the Unique Prime Factorization Theorem for S .

