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Some Remarks about the Adjoint System

S. Smirnov

Summary. Zero properties of solutions of a three-dimensional linear system are
discussed. Adjoint system is considered. Solutions of a three-dimensional linear system
which satisfy certain boundary conditions and the symmetrical solutions of adjoint system
are considered.

1 Introduction

The oscillatory properties of the third-order linear differential equation were extensively
investigated in the classical papers by many authors. The linear theory plays an important
role in the nonlinear theory. There are given estimates from below of the number of
solutions to third-order nonlinear boundary value problems in [3]. The number of solutions
depends on the oscillatory properties of a corresponding linear equation.

It is known [2] that if equation 2" + p(t)z” + q(t)x’ + r(t)x = 0 with p € C?, ¢ € C*,
r € C has a nontrivial solution satisfying the conditions z(a) = x(b) = 2/(b) = 0, then its
adjoint equation has a nontrivial solution which satisfies the conditions z(a) = 2/'(a) =
z(b) = 0.

The main purpose of this paper is to generalize this result for solutions of the three-
dimensional linear system of the form

/

T1 = 01171 + A12T2 + A1373,
!

Ty = Q2171 + A22T2 + A32T3, (1)
!

T3 = a31T1 + A32T2 + A33T3,

where the coefficients a;;(t) are continuous functions defined on an interval I unless ex-
plicitly stated otherwise.

Setting
X1 11 aiz2 A3
x=|z2], At)=|an axn as
xs a31 az2 a33

we can write (1)) in the form



136

Now we shall give some basic concepts and results concerning adjoint system for the
reader’s convenience. These results can be found in [1].
Consider the system (2). If AT is the transpose of A, the system

y =-A'(@t)y. (3)
is called the system adjoint to (2)).

Lemma 1.1 [1] A nonsingular matriz X (t) is a fundamental matriz for (2) if and only
if (X7Y()T is a fundamental matriz for (3).

2 Preliminaries

In this section we prove some propositions which are used in the main result.
Suppose, that
.CEll(t) 18
X(t) = T21 (t; $22(t§ 3(t; (4)

T31 (t

is the fundamental matrix of the system (2).

11(t) z12(t)
Lemma 2.1 If x1(t) = | 221(t) | and x2(t) = | xaa(t) | are two linearly independent
Jfgl(t) IgQ(t)
solutions of (2) such that x;(a) = zp(a) = 0 (i € {1,2,3} is fized) then any other
1(t)
solution x(t) = | z2(t) | for which z;(a) =0 can be written in the form
z3(t)

x(t) = e1x1(t) + coxa(t),
where ¢y, co denote arbitrary constants.
Proof. The general solution of (2) is
x(t) = c1x1(t) 4 coxa(t) + c3x35(t),

where ¢y, ¢9, c3 denote arbitrary constants.
Since x;(a) = 0 then
c1zi1(a) + cozin(a) + csziz(a) = 0.

Since x;1(a) = x;2(a) = 0 we get that c3 = 0.
Hence x(t) = ¢1x1(t) + coxa(t). O

Lemma 2.2 Suppose that x1(t) and x2(t) are two linearly independent solutions of (2)
such that xy(a) = xip(a) = 0 (where i,j € {1,2,3}, i # j are fized), and x(t) is a
solution of (2) for which x;(a) = 0. If z;(17) = (1) = 0 (a # 7), then the determinant
i1 (1) @in(T)

18 equal to zero.
2j1(7)  25(7)




137
Proof. Since z;(a) = 0 then
x(t) = e1x1(t) + coxa(t).

If 2;(1) = z;(7) = 0 then
{ C1Ti1 (’7') + CQxiQ(T) =0
Cll’jl(T) + CQJIJ'Q(T) = 0.

Ti1 (’7') IZQ(T)
zj1(7)  42(T)

Since ¢ + ¢3 > 0 then =0. O

Lemma 2.3 Suppose that x1(t) and x2(t) are two linearly independent solutions of (2)
such that x;1(a) = x(a) =0 (where i,j € {1,2,3}, i # j are fized). If the determinant
J]il(T) xiQ(T)
2 () 2o(7)

which z;(a) =0 and x;(1) = z;(1) =0 (a # 7).

is equal to zero, then there exists a nontrivial solution x(t) of (2) for

Proof. If z;(a) = 0 then
x(t) = c1x1(t) + coxa(t).
Ti1 (T) ZL‘Z‘Q(T)

i1 (1) 2j2(7)
(a} + a3 > 0) that

= 0 then there exist such constants ay, as, which are not all zeros

w () e (2m) =0

Hence there exists a nontrivial solution x(¢) of (2) for which z;(a) = 0 and z;(7) = z;(7) =

0. O

Since

3 Main result

Theorem 3.1 If x(t) is a nontrivial solution of the system (2) for which z;(a) = 0,
z;i(1) = x;(1) = 0, and y(t) is a solution of the system (3) for which y;(a) = y;(a) =0
(where i,5 € {1,2,3}, 1 # j are fized), then y;(1) = 0.

Proof. Since z;(a) = 0 then by the lemma 2.1
x(t) = c1%1(t) + coxa(t),

where x4 (t) and x5(t) are two linearly independent solutions of (2) for which z;(a) =
xia(a) = 0 and ¢;, ¢y denote arbitrary constants.
JZﬂ(T) xiQ(T)

1(r) wpa(r)| O

Since z;(7) = z;(7) = 0 then (by the lemma 2.2)

By the lemma 1.1

To21 22
P B (1)
y() = = | = [ TP = )
det X () T31 T3z us(1)

T11 T12

T21 22
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is the solution of the system (3).
More over y;(a) = y;(a) = 0.

() Tia(T) = 0 then y;(1) = 0. .

Since | (1) zpa(r)

Corollary 3.1 If system (2) has a nontrivial solution which satisfies the conditions x1(a) =
0, z1(7) = z2(T) = 0, then the adjoint system (3)) has a nontrivial solution which satisfies
the conditions y1(a) = y2(a) =0, yi(7) = 0.

Corollary 3.2 If system (2) has a nontrivial solution which satisfies the conditions x1(a) =
0, z1(7) = z3(7) = 0, then the adjoint system (3)) has a nontrivial solution which satisfies
the conditions y;(a) = ys(a) =0, y1(7) = 0.

Remark 3.1. 4 analogous statements can be formulated.

Remark 3.2. Theorem 3.1 has certain geometrical interpretation. Suppose that the so-
lution of the system (2) is a point (z(t), z2(t), z3(t)) in the three-dimensional space at
every moment of time ¢. Suppose that the nontrivial solution (point) of the system (2) at
the time moment ¢ = a is located on some coordinate plane o and at the time moment
t = 7 is located on some coordinate axis [ which belongs to coordinate plane ««. Then the
adjoint system (3)) has the nontrivial solution (point) which at the time moment ¢ = a is
located on the coordinate axis [ and at the time moment ¢ = 7 is located on the coordinate
plane a.

4 Example

Consider the system
x| = T,
[L’/2 = —I, (5)
xh = (cost + 3t?sint)x; + (3t* cost — sint)x,.

System’s (5) the fundamental matrix is

sint cost —cost
cost —sint sint | . (6)
t3 t 1—t

The system
Yy = y2 — (cost + 3t?sint)ys,
Yy = —1y1 + (sint — 3t2 cos t)ys, (7)
!/
y3 =0

is adjoint to (5).
System’s (7)) the fundamental matrix is

sint (1 —t)cost —t3sint —tcost —t3sint
cost (t—1)sint —t*cost tsint—t3cost |. (8)
0 1 1
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Consider the solution of the system (5]
sint
x(t) = | cost

and the solution of the system (7))

0

Since

{,(,’1(77') = 07

Il(O) = 0,

$3(O) = Oa
then (by the theorem [3.1))

n (ﬂ-) = 07

y3(7T) =0,

y1(0) =0

As we can see, the equalities are valid.
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C. CmupHOB. 3aMe4daHus O COIPSA>KEHHON cucCTeMe.

Awnnortarus. O0CyzK/Tal0TCs CBOMCTBA HyJ el peleHnii TuHeiiHoi TpEXMepHOil cuCTeMBI.
PaccmaTpuBaercs conpsizkéHHas cucteMa. PaccMaTpuBaioTcs pereHns THHeHOi TpEXMepHOi
CUCTEMbI YyJOBJIETBOPAIOIIUE OHpeﬂeﬂéHHbIM Kpa€BbIM YCJIOBUAM U CUMMETPpHUYHbIEC MM
PeIeHn s CONPAKEHHON CUCTEMBI.

VIIK 517.927

S. Smirnovs. Piezimes par saistito sistemu.
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Anotacija. Tiek apspriestas tris-dimensiju sistemas atrisinajumu nullu 1pasibas. Tiek
apskatita saistita sistema. Tiek apskatiti tris-dimensiju sistémas atrisinajumi kuri apmie-
rina noteiktus robeznosacijumus un tiem simetriskie saistitas sistémas atrisinajumi.
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