
135

Some Remarks about the Adjoint System

S. Smirnov

Summary. Zero properties of solutions of a three-dimensional linear system are
discussed. Adjoint system is considered. Solutions of a three-dimensional linear system
which satisfy certain boundary conditions and the symmetrical solutions of adjoint system
are considered.

1 Introduction

The oscillatory properties of the third-order linear differential equation were extensively
investigated in the classical papers by many authors. The linear theory plays an important
role in the nonlinear theory. There are given estimates from below of the number of
solutions to third-order nonlinear boundary value problems in [3]. The number of solutions
depends on the oscillatory properties of a corresponding linear equation.

It is known [2] that if equation x′′′ + p(t)x′′ + q(t)x′ + r(t)x = 0 with p ∈ C2, q ∈ C1,
r ∈ C has a nontrivial solution satisfying the conditions x(a) = x(b) = x′(b) = 0, then its
adjoint equation has a nontrivial solution which satisfies the conditions x(a) = x′(a) =
x(b) = 0.

The main purpose of this paper is to generalize this result for solutions of the three-
dimensional linear system of the form





x′1 = a11x1 + a12x2 + a13x3,
x′2 = a21x1 + a22x2 + a32x3,
x′3 = a31x1 + a32x2 + a33x3,

(1)

where the coefficients aij(t) are continuous functions defined on an interval I unless ex-
plicitly stated otherwise.
Setting

x =




x1

x2

x3


 , A(t) =




a11 a12 a13

a21 a22 a23

a31 a32 a33




we can write (1) in the form
x′ = A(t)x. (2)
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Now we shall give some basic concepts and results concerning adjoint system for the
reader’s convenience. These results can be found in [1].

Consider the system (2). If AT is the transpose of A, the system

y′ = −AT (t)y. (3)

is called the system adjoint to (2).

Lemma 1.1 [1] A nonsingular matrix X(t) is a fundamental matrix for (2) if and only
if (X−1(t))T is a fundamental matrix for (3).

2 Preliminaries

In this section we prove some propositions which are used in the main result.
Suppose, that

X(t) =




x11(t) x12(t) x13(t)
x21(t) x22(t) x23(t)
x31(t) x32(t) x33(t)


 (4)

is the fundamental matrix of the system (2).

Lemma 2.1 If x1(t) =




x11(t)
x21(t)
x31(t)


 and x2(t) =




x12(t)
x22(t)
x32(t)


 are two linearly independent

solutions of (2) such that xi1(a) = xi2(a) = 0 (i ∈ {1, 2, 3} is fixed) then any other

solution x(t) =




x1(t)
x2(t)
x3(t)


 for which xi(a) = 0 can be written in the form

x(t) = c1x1(t) + c2x2(t),

where c1, c2 denote arbitrary constants.

Proof. The general solution of (2) is

x(t) = c1x1(t) + c2x2(t) + c3x3(t),

where c1, c2, c3 denote arbitrary constants.
Since xi(a) = 0 then

c1xi1(a) + c2xi2(a) + c3xi3(a) = 0.

Since xi1(a) = xi2(a) = 0 we get that c3 = 0.
Hence x(t) = c1x1(t) + c2x2(t). ¤

Lemma 2.2 Suppose that x1(t) and x2(t) are two linearly independent solutions of (2)
such that xi1(a) = xi2(a) = 0 (where i, j ∈ {1, 2, 3}, i 6= j are fixed), and x(t) is a
solution of (2) for which xi(a) = 0. If xi(τ) = xj(τ) = 0 (a 6= τ), then the determinant∣∣∣∣
xi1(τ) xi2(τ)
xj1(τ) xj2(τ)

∣∣∣∣ is equal to zero.
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Proof. Since xi(a) = 0 then

x(t) = c1x1(t) + c2x2(t).

If xi(τ) = xj(τ) = 0 then {
c1xi1(τ) + c2xi2(τ) = 0,
c1xj1(τ) + c2xj2(τ) = 0.

Since c2
1 + c2

2 > 0 then

∣∣∣∣
xi1(τ) xi2(τ)
xj1(τ) xj2(τ)

∣∣∣∣ = 0. ¤

Lemma 2.3 Suppose that x1(t) and x2(t) are two linearly independent solutions of (2)
such that xi1(a) = xi2(a) = 0 (where i, j ∈ {1, 2, 3}, i 6= j are fixed). If the determinant∣∣∣∣
xi1(τ) xi2(τ)
xj1(τ) xj2(τ)

∣∣∣∣ is equal to zero, then there exists a nontrivial solution x(t) of (2) for

which xi(a) = 0 and xi(τ) = xj(τ) = 0 (a 6= τ).

Proof. If xi(a) = 0 then
x(t) = c1x1(t) + c2x2(t).

Since

∣∣∣∣
xi1(τ) xi2(τ)
xj1(τ) xj2(τ)

∣∣∣∣ = 0 then there exist such constants α1, α2, which are not all zeros

(α2
1 + α2

2 > 0) that

α1

(
xi1(τ)
xj1(τ)

)
+ α2

(
xi2(τ)
xj2(τ)

)
= 0.

Hence there exists a nontrivial solution x(t) of (2) for which xi(a) = 0 and xi(τ) = xj(τ) =
0. ¤

3 Main result

Theorem 3.1 If x(t) is a nontrivial solution of the system (2) for which xi(a) = 0,
xi(τ) = xj(τ) = 0, and y(t) is a solution of the system (3) for which yi(a) = yj(a) = 0
(where i, j ∈ {1, 2, 3}, i 6= j are fixed), then yi(τ) = 0.

Proof. Since xi(a) = 0 then by the lemma 2.1

x(t) = c1x1(t) + c2x2(t),

where x1(t) and x2(t) are two linearly independent solutions of (2) for which xi1(a) =
xi2(a) = 0 and c1, c2 denote arbitrary constants.

Since xi(τ) = xj(τ) = 0 then (by the lemma 2.2)

∣∣∣∣
xi1(τ) xi2(τ)
xj1(τ) xj2(τ)

∣∣∣∣ = 0.

By the lemma 1.1

y(t) =
1

det X(t)




∣∣∣∣
x21 x22

x31 x32

∣∣∣∣
−

∣∣∣∣
x11 x12

x31 x32

∣∣∣∣∣∣∣∣
x11 x12

x21 x22

∣∣∣∣




=




y1(t)
y2(t)
y3(t)
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is the solution of the system (3).
More over yi(a) = yj(a) = 0.

Since

∣∣∣∣
xi1(τ) xi2(τ)
xj1(τ) xj2(τ)

∣∣∣∣ = 0 then yi(τ) = 0. ¤

Corollary 3.1 If system (2) has a nontrivial solution which satisfies the conditions x1(a) =
0, x1(τ) = x2(τ) = 0, then the adjoint system (3) has a nontrivial solution which satisfies
the conditions y1(a) = y2(a) = 0, y1(τ) = 0.

Corollary 3.2 If system (2) has a nontrivial solution which satisfies the conditions x1(a) =
0, x1(τ) = x3(τ) = 0, then the adjoint system (3) has a nontrivial solution which satisfies
the conditions y1(a) = y3(a) = 0, y1(τ) = 0.

Remark 3.1. 4 analogous statements can be formulated.
Remark 3.2. Theorem 3.1 has certain geometrical interpretation. Suppose that the so-
lution of the system (2) is a point

(
x1(t), x2(t), x3(t)

)
in the three-dimensional space at

every moment of time t. Suppose that the nontrivial solution (point) of the system (2) at
the time moment t = a is located on some coordinate plane α and at the time moment
t = τ is located on some coordinate axis l which belongs to coordinate plane α. Then the
adjoint system (3) has the nontrivial solution (point) which at the time moment t = a is
located on the coordinate axis l and at the time moment t = τ is located on the coordinate
plane α.

4 Example

Consider the system




x′1 = x2,
x′2 = −x1,
x′3 = (cos t + 3t2 sin t)x1 + (3t2 cos t− sin t)x2.

(5)

System’s (5) the fundamental matrix is




sin t cos t − cos t
cos t − sin t sin t
t3 t 1− t


 . (6)

The system 



y′1 = y2 − (cos t + 3t2 sin t)y3,
y′2 = −y1 + (sin t− 3t2 cos t)y3,
y′3 = 0

(7)

is adjoint to (5).
System’s (7) the fundamental matrix is




sin t (1− t) cos t− t3 sin t −t cos t− t3 sin t
cos t (t− 1) sin t− t3 cos t t sin t− t3 cos t

0 1 1


 . (8)
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Consider the solution of the system (5)

x(t) =




sin t
cos t
t3




and the solution of the system (7)

y(t) =




sin t
cos t

0


 .

Since
x1(π) = 0,
x1(0) = 0,
x3(0) = 0,

then (by the theorem 3.1)
y1(π) = 0,
y3(π) = 0,
y1(0) = 0.

As we can see, the equalities are valid.
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Ñ. Ñìèðíîâ. Çàìå÷àíèÿ î ñîïðÿæ¼ííîé ñèñòåìå.
Àííîòàöèÿ.Îáñóæäàþòñÿ ñâîéñòâà íóëåé ðåøåíèé ëèíåéíîé òð¼õìåðíîé ñèñòåìû.

Ðàññìàòðèâàåòñÿ ñîïðÿæ¼ííàÿ ñèñòåìà. Ðàññìàòðèâàþòñÿ ðåøåíèÿ ëèíåéíîé òð¼õìåðíîé
ñèñòåìû óäîâëåòâîðÿþùèå îïðåäåë¼ííûì êðàåâûì óñëîâèÿì è ñèììåòðè÷íûå èì
ðåøåíèÿ ñîïðÿæ¼ííîé ñèñòåìû.

ÓÄÊ 517.927

S. Smirnovs. Piez̄ımes par saist̄ıto sistēmu.
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Anotācija. Tiek apspriestas tr̄ıs-dimensiju sistēmas atrisinājumu nulļu ı̄paš̄ıbas. Tiek
apskat̄ıta saist̄ıta sistēma. Tiek apskat̄ıti tr̄ıs-dimensiju sistēmas atrisinājumi kuri apmie-
rina noteiktus robežnosāc̄ıjumus un tiem simetriskie saist̄ıtas sistēmas atrisinājumi.
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