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On the Connection Between Double and Simple

Zeros of Solutions of the Third-Order Linear
Differential Equations

S. Smirnov

Summary. Zero properties of solutions of a third-order linear ordinary differen-
tial equation are discussed. Adjoint equation and equation which has similar properties
concerning distribution of zeros are considered. More general equation with the same
properties is established. Illustrative examples and figures are provided.
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1 Introduction

The main purpose of this paper is to consider zero properties for solutions of the third-
order linear differential equation of the form

x′′′ + p(t)x′′ + q(t)x′ + r(t)x = 0, (1)

where p(t), q(t) and r(t) are real-valued, continuous functions defined on an interval I
unless explicitly stated otherwise.

This work was stimulated by the investigations of third-order equations by N.V. Az-
belev and Z.B. Caljuk [1]. Results concerning distribution of zeros were obtained by M.
Hanan [2], W. J. Kim [3].

In section 2 we consider some basic concepts and results which are used in later
sections.

In section 3 we consider the connection between double and simple zeros of the equation
(1) and its adjoint.

In section 4 we investigate the equation (we call it by Kim’s equation) which has
similar properties with adjoint equation concerning distribution of zeros.

In section 5 we establish more general equation with the same properties. Adjoint
equation and Kim’s equation are the special cases of this equation.



126

2 Preliminaries

Lemma 2.1 If x(t) is a solution of the equation (1) and if there exist t0 ∈ I such that
x(t0) = x′(t0) = x′′(t0) = 0, then x(t) is trivial solution on I (x(t) ≡ 0).

Corollary 2.1 If t0 ∈ I is a zero of the nontrivial solution of the equation (1), then its
multiplicity can be equal only to 1 or 2.

Lemma 2.2 If x1(t) and x2(t) are two linearly independent solutions of (1) which vanish
at t = a then any other solution vanishing at this point can be written in the form

x(t) = c1x1(t) + c2x2(t).

Proof. If x1(t), x2(t), x3(t) are linearly independent solutions of (1), then the general
solution of (1) is

x(t) = c1x1(t) + c2x2(t) + c3x3(t),

where c1, c2, c3 denote arbitrary constants.
Assume that

x1(a) = x2(a) = 0.

If x(a) = 0, then
x(t) = c1x1(a) + c2x2(a) + c3x3(a) = 0.

Hence c3 = 0 and x(t) = c1x1(t) + c2x2(t).¤

Lemma 2.3 Suppose that x1(t) and x2(t) are two linearly independent solutions of (1)
such that x1(a) = x2(a) = 0, and x(t) is a solution of (1) which vanishes at t = a
(x(a) = 0). A necessary and sufficient condition for t = τ to be a double zero for x(t)
(x(τ) = x′(τ) = 0) is that the determinant

∣∣∣∣
x1(τ) x2(τ)
x′1(τ) x′2(τ)

∣∣∣∣

is equal to zero.

Proof. Necessity. Since x(a) = 0 then x(t) = c1x1(t) + c2x2(t).
If t = τ is a double zero for x(t) then

{
c1x1(τ) + c2x2(τ) = 0,
c1x

′
1(τ) + c2x

′
2(τ) = 0.

Since c2
1 + c2

2 > 0 then ∣∣∣∣
x1(τ) x2(τ)
x′1(τ) x′2(τ)

∣∣∣∣ = 0.

Sufficiency. Since x(a) = 0 then

x(t) = c1x1(t) + c2x2(t)
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and
x′(t) = c1x

′
1(t) + c2x

′
2(t).

Since ∣∣∣∣
x1(τ) x2(τ)
x′1(τ) x′2(τ)

∣∣∣∣ = 0

then {
x1(τ) = cx2(τ),
x′1(τ) = cx′2(τ).

Therefore, we have {
x1(τ)− cx2(τ) = 0,
x′1(τ)− cx′2(τ) = 0.

If we denote c = −c2

c1

we get





x1(τ) +
c2

c1

x2(τ) = 0,

x′1(τ) +
c2

c1

x′2(τ) = 0,

or {
c1x1(τ) + c2x2(τ) = 0,
c1x

′
1(τ) + c2x

′
2(τ) = 0.

Hence x(τ) = 0 and x′(τ) = 0.
Therefore x(t) has a double zero at t = τ.¤

Lemma 2.4 If x(t) and y(t) are two solutions of the equation (1) and x(t0) = x′(t0) =
y(t0) = y′(t0) = 0, t0 ∈ I (both solutions have a double zero at the same point), then x(t)
and y(t) are linearly dependent on I.

Lemma 2.5 If x(t) and y(t) are two solutions of the equation (1) and x(t1) = y(t1) =
x(t2) = y(t2) = 0, t1, t2 ∈ I (solutions have two common zeros at two distinct points),
then x(t) and y(t) are linearly dependent on I.

3 Adjoint equation

In the study of equation (1), its adjoint

z′′′ − (p(t)z)′′ + (q(t)z)′ − r(t)z = 0

or
z′′′ − pz′′ + (q − 2p′)z′ + (q′ − p′′ − r)z = 0 (2)

plays an important role.
The self-adjoint form of the third-order equation is [2]

z′′′ + pz′ +
1

2
p′y = 0.
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It is known [1] that if (1) has a nontrivial solution with three zeros on I, then there is
a nontrivial solution x of (1) which satisfies at least one set of the boundary conditions

x(a) = x′(a) = x(b) = 0, (3)

x(a) = x(b) = x′(b) = 0, (4)

where a, b ∈ I.
Furthermore, if (1) with p ∈ C2, q ∈ C1, r ∈ C has a nontrivial solution satisfying
condition (3) (respective (4)), then its adjoin equation (2) has a nontrivial solution which
satisfies condition (4) (respective(3)).

It is easy to show [1], that if x1(t), x2(t) and x3(t) are three linearly independent
solutions of the equation (1) and

∣∣∣∣∣∣

x1 x2 x3

x′1 x′2 x′3
x′′1 x′′2 x′′3

∣∣∣∣∣∣
= W 6= 0, (5)

then the functions

z1(t) =
1

W

∣∣∣∣
x1 x2

x′1 x′2

∣∣∣∣ , z2(t) =
1

W

∣∣∣∣
x1 x3

x′1 x′3

∣∣∣∣ , z3(t) =
1

W

∣∣∣∣
x2 x3

x′2 x′3

∣∣∣∣ (6)

are three linearly independent solutions of the equation (2).

Example 3.1 Consider equation

x′′′ + x′′ + x′ + x = 0. (7)

e−t, cos t, sin t is the fundamental set of solutions of the equation (7). Equation

x′′′ − x′′ + x′ − x = 0 (8)

is adjoint to (7). The fundamental set of solutions of the adjoint equation (8) is
et, cos t, sin t. Equation (7) has a solution which vanishes at t = 0 and has a double zero
at t = τ (τ ≈ −3.95).
Hence, the equation (8) has a solution which vanishes at t = τ and has a double zero at
t = 0.

4 Kim’s equation

Lemma 4.1 Assume that x1(t) and x2(t) are two linearly independent solutions of (1).
If

W01 =

∣∣∣∣
x1 x2

x′1 x′2

∣∣∣∣ , W02 =

∣∣∣∣
x1 x2

x′′1 x′′2

∣∣∣∣ , W12 =

∣∣∣∣
x′1 x′2
x′′1 x′′2

∣∣∣∣ ,

then the relations
W ′

01 = W02,
W ′

02 = W12 − pW02 − qW01,
W ′

12 = −pW12 + rW01

are valid, where p, q, r are the coefficients from the equation (1).
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Figure 3.1 Solutions of the problems (7),
x(0) = x(τ) = x′(τ) = 0, and
(8), x(0) = x′(0) = x(τ) = 0.

This statement was formulated in [3] and given without proof. We give the proof here for
the reader’s convenience.
Proof.

W ′
01 = (x1x

′
2 − x′1x2)

′ = x′1x
′
2 + x1x

′′
2 − x′′1x2 − x′1x

′
2 = W02.

W ′
02 = (x1x

′′
2 − x′′1x2)

′ = x′1x
′′
2 + x1x

′′′
2 − x′′′1 x2 − x′′1x

′
2 = (x′1x

′′
2 − x′′1x

′
2) + x1x

′′′
2 − x′′′1 x2 =

= W12 − px1x
′′
2 − qx1x

′
2 − rx1x2 + px′′1x2 + qx′1x2 + rx1x2 =

= W12 − p(x1x
′′
2 − x′′1x2)− q(x1x

′
2 − x′1x2) = W12 − pW02 − qW01.

W ′
12 = (x′1x

′′
2 − x′′1x

′
2)
′ = x′′1x

′′
2 + x′1x

′′′
2 − x′′′1 x′2 − x′′1x

′′
2 = x′1x

′′′
2 − x′′′1 x′2 =

= −px′1x
′′
2−qx′1x

′
2−rx′1x2 +px′′1x

′
2 +qx′1x

′
2 +rx1x

′
2 = −p(x′1x

′′
2−x′′1x

′
2)+r(x1x

′
2−x′1x2) =

= −pW12 + rW01.¤

Consider the third-order linear differential equation of the form

y′′′ + 2p(t) · y′′ +
(
p′(t) + q(t) +

(
p(t)

)2
)
· y′ +

(
q′(t) + p(t)q(t)− r(t)

)
· y = 0, (9)

where p(t), q(t) ∈ C1
I and r(t) ∈ CI . We will call the equation (9) by Kim’s equation.

Lemma 4.2 If x1(t) and x2(t) are two linearly independent solutions of (1), then the
function y(t) = x1(t)x

′
2(t)− x′1(t)x2(t) is the solution of the equation (9).

Proof. Denoted W01 = y1, W02 = y2, W12 = y3, we get normal system




y′1 = y2,
y′2 = y3 − py2 − qy1,
y′3 = −py3 + ry1.

(10)

Obviously, that (y1, y2, y3) is a solution of the system (10).
From the second equation

y3 = y′2 + py2 + qy1,
y′3 = y′′2 + p′y2 + py′2 + q′y1 + qy′1.
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Hence we get
{

y′1 = y2,
y′′2 + p′y2 + py′2 + q′y1 + qy′1 + py′2 + p2y2 + pqy1 − ry1 = 0.

And denoted y′2 = y4 we obtain




y′1 = y2,
y′2 = y4,
y′4 = −2py4 − (p′ + q + p2)y2 − (q′ + pq − r)y1.

(11)

Hence, the system (11) is equivalent to the linear equation (9).
Since y(t) = x1(t)x

′
2(t)−x′1(t)x2(t) is the first component of a solution to the system (10)

and to the system (11), then y(t) is the solution of the equation (9). ¤

Lemma 4.3 If x1(t), x2(t) and x3(t) are three linearly independent solutions of the equa-
tion (1), then the functions

y1(t) =

∣∣∣∣
x1 x2

x′1 x′2

∣∣∣∣ , y2(t) =

∣∣∣∣
x1 x3

x′1 x′3

∣∣∣∣ , y3(t) =

∣∣∣∣
x2 x3

x′2 x′3

∣∣∣∣

are three linearly independent solutions of the equation (9) and
∣∣∣∣∣∣

y1 y2 y3

y′1 y′2 y′3
y′′1 y′′2 y′′3

∣∣∣∣∣∣
= W 2,

where W is given in (5).

Proof. Let us denote

W ij
01 =

∣∣∣∣
xi xj

x′i x′j

∣∣∣∣ , W ij
02 =

∣∣∣∣
xi xj

x′′i x′′j

∣∣∣∣ , W ij
01 =

∣∣∣∣
x′i x′j
x′′i x′′j

∣∣∣∣ ,

i, j = 1, 2, 3, 1 ≤ i < j ≤ 3.
Hence

ω =

∣∣∣∣∣∣

y1 y2 y3

y′1 y′2 y′3
y′′1 y′′2 y′′3

∣∣∣∣∣∣
=

∣∣∣∣∣∣

W 12
01 W 13

01 W 23
01

(W 12
01 )′ (W 13

01 )′ (W 23
01 )′

(W 12
01 )′′ (W 13

01 )′′ (W 23
01 )′′

∣∣∣∣∣∣
=

=

∣∣∣∣∣∣

W 12
01 W 13

01 W 23
01

W 12
02 W 13

02 W 23
02

W 12
12 − pW 12

02 − qW 12
01 W 13

12 − pW 13
02 − qW 13

01 W 23
12 − pW 23

02 − qW 23
01

∣∣∣∣∣∣
=

=

∣∣∣∣∣∣

W 12
01 W 13

01 W 23
01

W 12
02 W 13

02 W 23
02

W 12
12 W 13

12 W 23
12

∣∣∣∣∣∣
+

∣∣∣∣∣∣

W 12
01 W 13

01 W 23
01

W 12
02 W 13

02 W 23
02

−pW 12
02 −pW 13

02 −pW 23
02

∣∣∣∣∣∣
+

∣∣∣∣∣∣

W 12
01 W 13

01 W 23
01

W 12
02 W 13

02 W 23
02

−qW 12
01 −qW 13

01 −qW 23
01

∣∣∣∣∣∣
=

=

∣∣∣∣∣∣

W 12
01 W 13

01 W 23
01

W 12
02 W 13

02 W 23
02

W 12
12 W 13

12 W 23
12

∣∣∣∣∣∣
.
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Setting

A =




x1 x2 x3

x′1 x′2 x′3
x′′1 x′′2 x′′3


 ,

A−1 =
1

W




A11 A21 A31

A12 A22 A32

A13 A23 A33


 =

1

W




W 23
12 −W 23

02 W 23
01

−W 13
12 W 13

02 −W 13
01

W 12
12 −W 12

02 W 12
01


 =

1

W
·B.

Since A · A−1 = E then A · B

W
= E or A ·B = WE.

Since det(A · B) = det(WE) = W 3 and det(A · B) = det A · det B then W 3 = W · det B
or

det B = W 2.

det B =

∣∣∣∣∣∣

W 23
12 −W 23

02 W 23
01

−W 13
12 W 13

02 −W 13
01

W 12
12 −W 12

02 W 12
01

∣∣∣∣∣∣
=

∣∣∣∣∣∣

W 23
12 −W 13

12 W 12
12

−W 23
02 W 13

02 −W 12
02

W 23
01 −W 13

01 W 12
01

∣∣∣∣∣∣
= −

∣∣∣∣∣∣

W 23
01 −W 13

01 W 12
01

−W 23
02 W 13

02 −W 12
02

W 23
12 −W 13

12 W 12
12

∣∣∣∣∣∣
=

=

∣∣∣∣∣∣

W 12
01 −W 13

01 W 23
01

−W 12
02 W 13

02 −W 23
02

W 12
12 −W 13

12 W 23
12

∣∣∣∣∣∣
=

∣∣∣∣∣∣

W 12
01 W 13

01 W 23
01

W 12
02 W 13

02 W 23
02

W 12
12 W 13

12 W 23
12

∣∣∣∣∣∣
= ω.

ω = det B = W 2.

ω = W 2. ¤
Theorem 4.1 If x(t) is a nontrivial solution of the equation (1) which vanishes at t = a
(x(a) = 0), has a double zero at t = τ (x(τ) = x′(τ) = 0), then the solution y(t) of
equation (9), which has a double zero at t = a (y(a) = y′(a) = 0) vanishes at t = τ
(y(τ) = 0).

Proof. Let x(t) be a solution of the equation (1), which vanishes at t = a. Then (by the
lemma 2.2) this solution can be written in the form x(t) = c1x1(t) + c2x2(t), where x1(t)
and x2(t) are two linearly independent solutions of (1) which vanish at t = a, and c1, c2

denote arbitrary constants.

Since at t = τ x(τ) = x′(τ) = 0, then (by the lemma 2.3)

∣∣∣∣
x1(τ) x2(τ)
x′1(τ) x′2(τ)

∣∣∣∣ = 0.

By the lemma 4.2 y(t) =

∣∣∣∣
x1(t) x2(t)
x′1(t) x′2(t)

∣∣∣∣ is the solution of the equation (9),

and y(a) = y′(a) = 0.

Since

∣∣∣∣
x1(τ) x2(τ)
x′1(τ) x′2(τ)

∣∣∣∣ = 0, then y(τ) = 0.

Hence the solution of the equation (9) which has a double zero at t = a vanishes at
t = τ .¤
Example 4.1 Kim’s equation for the equation (7) is

x′′′ + 2x′′ + 2x′ = 0. (12)

Equation (12) is easier than adjoint equation (8). The fundamental set of solutions of the
Kim’s equation (12) is 1, e−t(sin t− cos t), e−t(sin t + cos t).
The solution of the equation (12) which has a double zero at t = 0 vanishes at t = τ .
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Figure 4.1 Solutions of the problems (7),
x(0) = x(τ) = x′(τ) = 0, and

(12), x(0) = x′(0) = x(τ) = 0.

5 Generalized equation

Suppose that f(t) 6= 0 ∀t ∈ I. It is easy to prove that
∣∣∣∣∣∣

fy1 fy2 fy3

(fy1)
′ (fy2)

′ (fy3)
′

(fy1)
′′ (fy2)

′′ (fy3)
′′

∣∣∣∣∣∣
= f 3W 2 6= 0.

Hence, functions fy1, fy2, fy3 are the fundamental set of solutions of the equation

1

f 3W 2

∣∣∣∣∣∣∣∣

fy1 fy2 fy3 u
(fy1)

′ (fy2)
′ (fy3)

′ u′

(fy1)
′′ (fy2)

′′ (fy3)
′′ u′′

(fy1)
′′′ (fy2)

′′′ (fy3)
′′′ u′′′

∣∣∣∣∣∣∣∣
= 0. (13)

Using that

1
W 2

∣∣∣∣∣∣

y1 y2 y3

y′1 y′2 y′3
y′′′1 y′′′2 y′′′3

∣∣∣∣∣∣
= −2p, 1

W 2

∣∣∣∣∣∣

y1 y2 y3

y′′1 y′′2 y′′3
y′′′1 y′′′2 y′′′3

∣∣∣∣∣∣
= p′ + q + p2,

1

W 2

∣∣∣∣∣∣

y′1 y′2 y′3
y′′1 y′′2 y′′3
y′′′1 y′′′2 y′′′3

∣∣∣∣∣∣
= −(q′ + pq − r),

the equation (13) can be rewritten in the form

u′′′ +
(

2p− 3f ′

f

)
u′′ +

(
6(f ′)2

f 2
− 4f ′p

f
− 3f ′′

f
+ (p′ + q + p2)

)
u′+

+

(
−6(f ′)3

f 3
+

4(f ′)2p

f 2
+

6f ′f ′′

f 2
− f ′(p′ + q + p2)

f
− 2f ′′p

f
− f ′′′

f
+ (q′ + pq − r)

)
u = 0.

(14)

It is easy to show, that if f ≡ 1 then the equation (14) is equivalent to the equation

(9), and if f =
1

W
then the equation (14) is equivalent to the equation (2). Hence, Kim’s

equation and adjoint equation are the special cases of the equation (14).
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Suppose that f > 0 ∀t ∈ I. Then (ln f)′ =
f ′

f
, and the equation (14) can be written

in the form

u′′′ +
(
2p− 3(ln f)′

)
u′′ +

(
− 3(ln f)′′ + 3((ln f)′)2 − 4p(ln f)′ + p′ + q + p2

)
u′+

+
(
− (ln f)′′′ − 2p(ln f)′′ + 3(ln f)′(ln f)′′ − ((ln f)′)3 + 2p((ln f)′)2−

− (ln f)′(p′ + q + p2) + (q′ + pq − r)
)
u = 0.

And setting (ln f)′ = g, we get the equation

u′′′ +
(
2p− 3g

)
u′′ +

(
− 3g′ + 3g2 − 4pg + p′ + q + p2

)
u′+

+
(
− g′′ − 2pg′ + 3gg′ − g3 + 2pg2 − g(p′ + q + p2) + q′ + pq − r

)
u = 0. (15)

Remark 5.1. If x(t) is a nontrivial solution of the equation (1) which vanishes at t = a
(x(a) = 0), has a double zero at t = τ (x(τ) = x′(τ) = 0), then the solution y(t) of
equation (15), which has a double zero at t = a (y(a) = y′(a) = 0) vanishes at t = τ
(y(τ) = 0).
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Ñ. Ñìèðíîâ. Î ñâÿçè ìåæäó äâîéíûìè è ïðîñòûìè íóëÿìè ðåøåíèé
ëèíåéíûõ äèôôåðåíöèàëüíûõ óðàâíåíèé òðåòüåãî ïîðÿäêà.

Àííîòàöèÿ. Îáñóæäàþòñÿ ñâîéñòâà íóëåé ðåøåíèé ëèíåéíûõ äèôôåðåíöèàëü-
íûõ óðàâíåíèé òðåòüåãî ïîðÿäêà. Ðàññìàòðèâàþòñÿ ñîïðÿæ¼ííîå óðàâíåíèå è óðàâíå-
íèå, êîòîðîå èìååò ñõîæèå ñâîéñòâà îòíîñèòåëüíî ðàñïðåäåëåíèÿ íóëåé. Ïðåäñòàâëåíî
áîëåå îáùåå óðàâíåíèå, êîòîðîå èìååò òå æå ñâîéñòâà. Äàþòñÿ íàãëÿäíûå ïðèìåðû
è ãðàôèêè.

ÓÄÊ 517.927

S. Smirnovs. Par trešās kārtas lineāro diferenciālvienādojumu atrisinājumu
divkāršam un parastam nullēm.
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Anotācija. Tiek apspriestas trešās kārtas lineāru diferenciālvienādojumu atrisinājumu
nulļu ı̄paš̄ıbas. Tiek apskat̄ıts saist̄ıtais vienādojums un vienādojums kurām ir l̄ıdz̄ıgas
ı̄paš̄ıbas attiec̄ıgi pret nulļu distribūciju. Tiek apskat̄ıts vispār̄ıgāks vienādojums kurām
ir l̄ıdz̄ıgas ı̄paš̄ıbas.
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