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On the Connection Between Double and Simple

Zeros of Solutions of the Third-Order Linear
Differential Equations

S. Smirnov

Summary. Zero properties of solutions of a third-order linear ordinary differen-
tial equation are discussed. Adjoint equation and equation which has similar properties
concerning distribution of zeros are considered. More general equation with the same
properties is established. Illustrative examples and figures are provided.
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1 Introduction

The main purpose of this paper is to consider zero properties for solutions of the third-
order linear differential equation of the form

"+ pt)z" + q(t)x +r(t)r =0, (1)

where p(t), ¢(t) and r(t) are real-valued, continuous functions defined on an interval [
unless explicitly stated otherwise.

This work was stimulated by the investigations of third-order equations by N.V. Az-
belev and Z.B. Caljuk [1]. Results concerning distribution of zeros were obtained by M.
Hanan [2], W. J. Kim [3].

In section 2 we consider some basic concepts and results which are used in later
sections.

In section 3 we consider the connection between double and simple zeros of the equation
(1) and its adjoint.

In section 4 we investigate the equation (we call it by Kim’s equation) which has
similar properties with adjoint equation concerning distribution of zeros.

In section 5 we establish more general equation with the same properties. Adjoint
equation and Kim’s equation are the special cases of this equation.
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2 Preliminaries

Lemma 2.1 If x(t) is a solution of the equation (1) and if there exist ty € I such that
x(tg) = 2'(to) = " (ty) = 0, then z(t) is trivial solution on I (z(t) =0).

Corollary 2.1 Ifty € I is a zero of the nontrivial solution of the equation (1)), then its
multiplicity can be equal only to 1 or 2.

Lemma 2.2 [fx(t) and z5(t) are two linearly independent solutions of (1) which vanish
at t = a then any other solution vanishing at this point can be written in the form

z(t) = 11 (t) + caxa(t).

Proof. If z(t), xo(t), x3(t) are linearly independent solutions of (1), then the general
solution of (1) is
z(t) = c121(t) + cawa(t) + csx3(t),

where ¢y, ¢9, c3 denote arbitrary constants.
Assume that

If z(a) = 0, then
z(t) = crz1(a) + caza(a) + cszs(a) = 0.

Hence ¢3 = 0 and z(t) = c121(t) + coza(t).0

Lemma 2.3 Suppose that x1(t) and xs(t) are two linearly independent solutions of (1)
such that z1(a) = z3(a) = 0, and x(t) is a solution of (1) which vanishes at t = a
(x(a) = 0). A necessary and sufficient condition for t = 7 to be a double zero for x(t
(x(1) = 2'(7) = 0) is that the determinant

1s equal to zero.

Proof. Necessity. Since z(a) = 0 then z(t) = cyx1(t) + caxa(t).
If t = 7 is a double zero for x(t) then

{ c121(T) + cama(7T) = 8,

a2y (7) + ezl (1) =

Since ¢ + ¢3 > 0 then

Sufficiency. Since x(a) = 0 then

z(t) = c1x1(t) + caxa(t)



and
2/ (t) = 12y () + camh(t)
Since
0(r) =) _
2y (T)  a5(7)
then

Therefore, we have

If we denote ¢ = — =2 we get
C1
c
21 (7) + 0—2952(7) =0,
1
#4(r) + Zay(r) = 0,
C1
or

{ c121(T) + cama(7) = 8,

Hence z(7) = 0 and 2/(7) = 0.
Therefore z(t) has a double zero at ¢ = 7.0J

Lemma 2.4 If x(t) and y(t) are two solutions of the equation (1) and z(ty) = 2'(ty) =
y(to) = vy'(to) =0, tg € I (both solutions have a double zero at the same point), then x(t)
and y(t) are linearly dependent on I.

Lemma 2.5 If x(t) and y(t) are two solutions of the equation (1) and x(t1) = y(t1) =
x(te) = y(t2) = 0, t1,ta € I (solutions have two common zeros at two distinct points),
then x(t) and y(t) are linearly dependent on I.

3 Adjoint equation
In the study of equation (1)), its adjoint

2" = (p()z)" + (q(t)z) —r(t)z =0

or
2 —p" + (g =20+ (¢ =" =1r)2=0 (2)

plays an important role.
The self-adjoint form of the third-order equation is [2]

1
ZI” +pzl + §p/y — 0
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It is known [1] that if (I) has a nontrivial solution with three zeros on I, then there is
a nontrivial solution x of (1)) which satisfies at least one set of the boundary conditions

z(a) = 2'(a) = x(b) = 0, (3)

z(a) = z(b) = 2/(b) = 0, (4)

where a, b € 1.
Furthermore, if (1) with p € C? ¢ € C', r € C has a nontrivial solution satisfying
condition (3) (respective (4)), then its adjoin equation (2) has a nontrivial solution which
satisfies condition (4) (respective(3)).

It is easy to show [1], that if x;(t), x2(t) and z3(t) are three linearly independent
solutions of the equation (1)) and

r1 X2 I3
vy owy wy| =W #0, ()

" "

then the functions

O i R A B W (6
are three linearly independent solutions of the equation (2).
Example 3.1 Consider equation
" + 2"+ 2"+ =0. (7)

e, cost, sint is the fundamental set of solutions of the equation (7). Equation

x/l/_x//_{_x/_aj:o (8)

is adjoint to (7). The fundamental set of solutions of the adjoint equation (8) is
e', cost, sint. Equation (7) has a solution which vanishes at t =0 and has a double zero
att =1 (1~ —3.95).

Hence, the equation (8) has a solution which vanishes at t = 7 and has a double zero at
t=0.

4 Kim’s equation

Lemma 4.1 Assume that z1(t) and z4(t) are two linearly independent solutions of (1)).

If

/ /
1 T2 r1 T2 Ty Ty
WOI = |, AR WOQ = | s Wiy = " "o
1 To 1 Lo L1 Lo
then the relations
/
WOI — W[)Q,

Wég = Wia — pWoa — qWou,
1o = —pWia +rWpn

are valid, where p, q, v are the coefficients from the equation (1)).
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Figure 3.1 Solutions of the problems (7)),
z(0) = x(7) = 2/(7) = 0, and
8), (0) = 2(0) = z(r) = 0.

This statement was formulated in [3] and given without proof. We give the proof here for

the reader’s convenience.
Proof.

r / / I " " A
Wy = (z12y — 2ixe) = 212 + ;25 — 219 — T2y = W

A/ " "

! " 1 ! ! " n n
Wy = (125 — 2f0)" = 2y + z12y — 2

noro_ "o _
xo — xi g = (2jwy — 2fry) + may — xf'xy =
/i / /! !
= Wis — pr12y — qr175 — 72129 + PTI T2 + QT T2 + 1T1X2 =
1/ " ! !
= Wis — p(x12y — i 12) — q(x125 — ] 20) = Wio — pWoo — ¢Woy.

! ! N "IN\ 1 ! mn ./ n_no__ ! mn_ro__
Wi = (x1x2 —aiwy) = 2wy + 2ixy — 2’7l — aaly = vyay — x)wy =

/ 1 / / / ! / / / ! n ! / /
= —pT| Ty — qT Ty — 1T Ty + P Xy + qT Ty + 1317 = —p(X) 1y — 2] wy) + (112 — ) 70) =
= —pW12 + T'WQl.D

Consider the third-order linear differential equation of the form
2
g+ 2p(t) "+ (P + )+ (6(0)7) -y + (40 + p(Balt) = (1)) -y =0, (9)
where p(t), ¢(t) € C} and r(t) € C;. We will call the equation (9) by Kim’s equation.

)
Lemma 4.2 If z1(t) and z5(t) are two linearly independent solutions of (1), then the
function y(t) = z1(t)xh(t) — z (t)xo(t) is the solution of the equation (9).

Proof. Denoted Wy, = y1, Wos = 42, Wia = y3, we get normal system
yll = Y2,

Yo = Y3 — DY2 — qU1, (10)
Yy = —Dys + 1.

Obviously, that (y1, y2, ys) is a solution of the system (10).
From the second equation

Ys = Y + Py2 + qUn,
yh =y + P'ys + pys + ¢'y1 + qui.



130

Hence we get

yi = Y2,
{ Yy + 0'ya + pyh + ¢y + qyh 4 pys + pPye + payr — iy = 0.
And denoted y) = y4 we obtain
yi = Y2,

Yy = Yu, (11)
yy=—2pys — (' + ¢+ p*)y2 — (¢ +pg— 1)y

Hence, the system (11)) is equivalent to the linear equation (9).
Since y(t) = x1(t)xh(t) — 2 (t)x2(t) is the first component of a solution to the system (10)
and to the system (1)), then y(¢) is the solution of the equation (9). O

Lemma 4.3 If x1(t), x2(t) and x3(t) are three linearly independent solutions of the equa-
tion (1)), then the functions

Ty T2
T Ty

T1 T3

! !
Ty T3

Ty I3

yi(t) = , Yo(t) = , y3(t) =

are three linearly independent solutions of the equation (9) and

YioY2 Y3 )
oYy Yzl =W
oy s

where W is given in (5).

Proof. Let us denote

/
ij _ |Ti L ij _ |Li Ly ij _
WOl - J}; :L‘; ) 02 — ‘CL’;/ :L‘;-/ ) W01 - /Z/ xj{ )
, j=1,2, 3, 1<i<j<3.
Hence
12 13 23
Y1 Y2 Y3 W(n W(n W01
_ / / I 12\7 13/ 23\/ | __
wW=1Y1 Y Y3| = (W%) (W%) (Wgé) =
1! 1 /! 1! 1 1/
Y1 Y2 Y3 (W01) (W01) (W()l)
12 13 23
VVO112 I/V0113 W0213
R P T . G UU SN
Wiz —pWas — gWoi Wi — pWos' — ¢Wor Wiz — pWes — ¢Wii
12 13 23 12 13 23 12 13 23

_ 12 13 23 12 13 23 12 13 23
= Why Wy Wes| +| Wes Wos W |+ Wes Wos W
12 13 23 12 13 23 12 13 23
Wiy Wiy Wi —pW02 _pWOQ —pW02 _CIWm —qu _qu
12 13 23

_ 12 13 23

= Wyy Wy Wisl.

12 13 23

Wiy Wi Wi



Setting
Ty Ty X3
A=) o |,
1 All A21 A31 1 W1223 _‘/‘/0223 VV()213 1
A_lzw A12 A22 A32 :W —W1123 W0123 _WO113 :WB
Az Ags Asg W1122 —Wole VV()112

B
SinceA-Ail:EthenA-W:EorA-B:WE.
Since det(A - B) = det(WE) = W3 and det(A - B) = det A - det B then W3 = W - det B

or

det B = W>.
23 23 23 23 13 12 23 13 12
— 13 13 13| _ 23 13 12| __ 23 13 12
12 12 12 23 13 12 23 13 12

Woi, g Mo (Mo Woi W
T D e = e e o) =
12 12 12 12 12 12
w=det B=W?2.
w=Ww2.0

Theorem 4.1 If x(t) is a nontrivial solution of the equation (1) which vanishes att = a
(z(a) = 0), has a double zero at t = 7 (x(7) = 2/(7) = 0), then the solution y(t) of
equation (9), which has a double zero at t = a (y(a) = y'(a) = 0) vanishes at t = 7
(y(1) = 0).

Proof. Let x(t) be a solution of the equation (1), which vanishes at t = a. Then (by the
lemma 2.2)) this solution can be written in the form z(t) = c121(t) 4+ coz2(t), where x4 (¢)
and z5(t) are two linearly independent solutions of (1) which vanish at ¢t = a, and ¢y, ¢
denote arbitrary constants.

z1(7)  2(T)

2y (r) wh(r)| ="

Since at t = 7 z(7) = 2/(1) = 0, then (by the lemma 2.3)

By the lemma 4.2/ y(t) = ‘56/1(’5) To(t)

r1(t)  w5(t)

is the solution of the equation (9),

and y(a) = y'(a) = 0.

z1(1) wa(T)| _ —

2 () 2|~ 0, then y(7) = 0.
Hence the solution of the equation (9) which has a double zero at t = a vanishes at
t=71.0

Example 4.1 Kim’s equation for the equation (7)) is
2" + 22" + 22 = 0. (12)

Since

Equation (12) is easier than adjoint equation (8). The fundamental set of solutions of the
Kim’s equation (12) is 1, e *(sint — cost), e *(sint + cost).
The solution of the equation (12) which has a double zero at t = 0 vanishes att = 7.
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Figure 4.1 Solutions of the problems (7)),
z(0) = z(1) = 2/(7) =0, and
(12), z(0) = 2/(0) = z(1) = 0.

5 Generalized equation

Suppose that f(t) # 0Vt € I. Tt is easy to prove that

Jun T2 Jus
() (fy2) (fys)| = fPW?#£0.
(fy)" (fy2)" (fys)”

Hence, functions fyy, fys, fys are the fundamental set of solutions of the equation

V! T2 Jy3 u
L) (w) (w) v 13)
w2 (fy)" (fy2)" (fys)” " .
(fyl)/// (fy2)/// (fy3)/// u///

Using that
i Y2 Y3 B Y2 Y3
wE U Y Y| =20 w= Y Wy Y| =0 +aq+pP
yill yé// yg/ yi// yg/ yé/l
Ll v s /
we | vz ys|=—(d +pg—r),
vy s

the equation (13)) can be rewritten in the form

W+ <2p . 3_f/> o+ <6(f’)2 B 4f'p _ 3f" . (p/ i +p2)> i

f f? f f
6 f/ 3 4 f/ 2 6f/f// f/ /+ + 2 2f// n ,
+(_ <f3> <f2>p+ o 0 . P) fp_7+<q+pq_r))u:0_

(14)

It is easy to show, that if f = 1 then the equation (14) is equivalent to the equation
1
(9), and if f = W then the equation (14) is equivalent to the equation (2). Hence, Kim’s

equation and adjoint equation are the special cases of the equation (14).
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f/

Suppose that f > 0Vt € I. Then (Inf) = f

in the form
a4 (2p =300 f) Y+ (=300 £+ 3((n f))? = dp(in f)' + 9/ + g+ p?)u'+
(= (npy” = 2p(n £+ 3(In f)(m f)" = (0 f))° + 2p((n f))*~

—(Inf)Y @ +q+p*)+(d +pg— r))u —0.

and the equation (14) can be written

And setting (In f) = g, we get the equation
u”’~|—<2p—3g>u"+(—3g’+392—4pg+p'+q+p2>u'~l—
+ (—g”—2pg’+3gg’—g3+2pg2—g(p +q+p )+q’+pq—r)u=0- (15)

Remark 5.1. If x(t) is a nontrivial solution of the equation (1) which vanishes at t = a
(z(a) = 0), has a double zero at t = 7 (x(7) = 2/(7) = 0), then the solution y(¢) of
equation (15), which has a double zero at t = a (y(a) = 3/(a) = 0) vanishes at t = 7

(y(7) = 0).
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C. CvupuoB. O cBg3u MeXK/Ay ABOMHBIMU N IIPOCTHIMHU HYJAAMH PeIleHui
auHelHbIX auddepeHIuaIbHbIX yPaBHEHNII TPETHEro MoOpPsaaKa.

Anvoranusa. O0cyzxaores cBoiicTBa HyJeil perntenuit juHeitHbix guddepennuaib-
HBIX yPaBHEHWIT TPETHEro Mopsijika. PaccMaTpuBaioTCst CONPSAZKEHHOE YypaBHEHUE U Y PaBHE-
HIE, KOTOPOe NMEET CXOXKHe CBOCTBA OTHOCUTE/IHHO pactpeaenenns uyJeii. [Ipeacrasieno
boJiee obIee ypaBHEHHE, KOTOPOe UMEEeT Te Ke CBoiicTBa. /laloTca HaryIsaHbe MPUMEpPHI
1 rpaduK.

VIK 517.927

S. Smirnovs. Par tresas kartas linearo diferencialvienadojumu atrisinajumu
divkarsam un parastam nullem.
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Anotacija. Tiek apspriestas tresas kartas linearu diferencialvienadojumu atrisinajumu
nullu 1pasibas. Tiek apskatits saistitais vienadojums un vienadojums kuram ir lidzigas
1pasibas attiecigi pret nullu distribticiju. Tiek apskatits visparigaks vienadojums kuram
ir Iidzigas 1pasibas.
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