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Propagator Method for Numerical Solution

of the Cauchy Problem for ADR Equation

J.Rimšāns and D.Žaime

Summary. A new numerical scheme based on our propagator method is presented
for solution of ADR equations. The method exploits an approach of a non-standard
representation of the time derivative, by applying the derivative to the solution given as
the product of two functions, where one of them is a propagator function. Propagator
function is chosen in nonlocal way, and with respect to the solution, a new finite volume
difference scheme is presented. Stability of the scheme is investigated. It is shown, that
stability restrictions for the propagator scheme become more weaker in comparison to
traditional semi-implicit difference schemes. There are some regions of ADR coefficients,
for which elaborated propagator difference scheme becomes absolutely stable. It is proven
that the scheme is unconditionally monotonic. The scheme has the first order in time and
the second order truncation errors in space. The scheme can be easy extended to the
solution of multidimensional non-steady problems.

MSC 35K15, 35K57, 65N06, 65N12

1 Introduction

Advective dispersive reactive (ADR) equation [1] is a model of a problem that incorporates
with the diffusive, bulk solute movement and sorptive processes. The Cauchy problem for
non-steady ADR equation is given as follows:

∂c

∂t
=

∂2c

∂x2
+ f(

∂c

∂x
, c), f = −Rev

∂c

∂x
− kc, x ∈ <, (1)

c(0, x) = c0(x). (2)

The ADR equation (1) is written in a normalized form c = ĉ/c∗, v = v̂/U, t =
t̂/T, x = x̂/L, by using normalization coefficients c∗ = 1m−3, T = L2/D̂, Re is
the Reynolds number Re = UL/D̂, and k = λ̂L2/D̂ ≥ 0 , v̂ = û/R, where R > 0 is
a factor of retardation, D̂ ≥ d > 0 is a diffusion coefficient, D̂ = v̂α̂, α̂ is longitudinal



112

groundwater dispersivity, ĉ is concentration of chemical components, û is contaminant
velocity, λ̂ = k̂/R, k̂ ≥ 0 is hydraulic conductivity and L is a length of region.

In recent years a modern geochemical transport models have become more and more
complex. Problem (1)-(2) is the simplest way to describe such phenomena, and for them is
at least the particular analytical solution [2]. Although a general solution of the problem
usually can be represented as the result of infinity sum. The summation can cause specific
difficulties, and numerical solution of the problem (1)-(2) is a likelihood to existing others.
Moreover, as our elaborated method can easily be extended for solution of general ADR
problems, we look at equation (1) in order to treat numerical method.

Numerical methods for solving advective-diffusive-reactive equations are investigated
and described in [1], [4] -[6], [8]. The application of known numerical solution methods
usually has computational difficulties related with restrictions on the time step caused
by numerical instability. Traditionally, there are two approaches: explicit and implicit
approach for numerical solution of non-steady state problems.

In [5] modern geochemical transport models are described, the implicit difference
scheme by applying splitting for chemical reaction and transport operators for solving
of equations is used. Scheme is absolutely stable, designed with rather extremely fine
grids to account small-scale characteristics. It requires extreme memory for keeping of
matrixes, and special algorithms for finding inverse matrix should be used, which cause
a growth of computer calculations and require use of parallel computations. In this case,
to fully exploit the advanced computing power of today’s supercomputers, innovative
algorithms have to be developed.

In [8] wide theoretical investigations for numerical solving second order elliptic and
parabolic equations are provided. The advantages of explicit/implicit methods of numer-
ical solution are described, including the semi-implicit case, when the inverse matrix can
be easily calculated and stability restrictions are not so hard as for explicit methods. Sta-
bility conditions for convection-diffusion equations are investigated by applying % (regular
stability) criterion.

We offer a new semi-implicit propagator difference scheme for solving ADR equations.
By applying von Neumann’s strict stability criterion and using Cauchy problem analytical
solution (estimation) improvement for stability limits of our proposed difference scheme
is shown.

In our consideration we introduce a non-regular grid ω = ωh × ωτ :

ωh = {xi, i = 0, 1, 2, ..., N, x0 = 0, xN = L}, ωτ = {tl, l = 0, 1, 2, ..., M ;

t0 = 0, tM = T},
xi > xi−1, hi = xi − xi−1, i = 1, 2, 3, ..., N ; tl > tl−1, tl = tl − tl−1,

l = 1, 2, 3, ..., M,

where h and τ are space and time steps, respectively.
In order to describe our approach in the next section we analyze stability features of

the semi-implicit central difference scheme.
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2 Stability analysis for the central difference scheme

For stability analysis we consider the square quasi-uniform mesh, with xi = ih, i =
0, 1, 2, ..., N , xN = L, tl = lτ, l = 0, 1, 2, ..., M , tM = T .

For a function C defined on ωτ,h = ωτ × ωh let us assume that:

C l
i = C(tl, xi), ∂tC

l (x) = τ−1 (C (tl+1, x)− C (tl, x)) ,

∂xC
l (x) = h−1 (C (tl, x + h)− C (tl, x)) ,

∂xC
l (x) = h−1 (C (tl, x)− C (tl, x− h)) . (3)

The semi-implicit central difference scheme for solving equation (1) is:

∂tC
l (x) = ∆hC l+1 (x)−Rev

1

2h

(
C l (x + h)− C l (x− h)

)− kC l(x), (4)

∆hC l (x) = ∂x∂xC
l (x) . (5)

The solution of the difference scheme (4) will be expressed in the form:

C l (x) = C̃ l (x) + δC l (x) , (6)

where C̃ l is an unperturbed solution of the difference scheme (4) and δC l is a perturbation
on the time step l.

After substitution of solution (6) in the difference scheme (4), we can write equation
for them:

δC l+1
i − δC l

i

τ
=

1

h2
(δC l+1

i+1 − 2δC l+1
i + δC l+1

i−1)−Rev
δC l

i+1 − δC l
i−1

2h
− kδC l

i . (7)

By using von Neumann approach we introduce substitution δC l
i = (G∗)l exp (Iiϕ), as

a result, expression for G∗ from (7) is obtained:

G∗ =
[ 1
τ
− Rev

2h
(exp (Iϕ)− exp (−Iϕ))− k]

1
τ
− 1

h2 (exp (Iϕ)− 2 + exp (−Iϕ))
, (8)

and writing exp (Iϕ) = cos ϕ + I sin ϕ, from (8), we get

G =

√
(1− kτ)2 + R2

ev2τ2

h2 sin2 ϕ
√

(1 + 4τ
h2 sin2 ϕ

2
)2

, (9)

where G = |G∗|. The stability condition for equation (7) is G ≤ 1. In order to fulfill
the stability condition, and by introducing a notation:

µ =
τ

h2
, s = sin2ϕ

2
, 0 ≤ s ≤ 1, (10)

such inequality follows:

− 1 ≤ (1− kµh2)2 + 4R2
ev2µ2h4

h2 s(1− s)

(1 + 4µs)2
≤ 1. (11)
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Solution for the left side of inequality (11) is obviously true for all values of µ, because
both counter and denominator always are positive. The right side of inequality (11) gives:

µ(k2h4 + 4R2
ev

2h2s(1− s)− 16s2)− (2kh2 + 8s) ≤ 0. (12)

Considering inequality (12), it follows that second term always is positive, and if for
each s fulfills

k2h4 + 4R2
ev

2h2s(1− s)− 16s2 ≤ 0, (13)

then inequality (12) is true for all values of µ and the semi-implicit difference scheme (4)
should be absolutely stable. Although it is worth to mention that it happens for all s
only when k = 0 and v = 0, or when equation (1) is a diffusion equation, for which, as
it is known, semi-implicit central difference scheme is absolutely stable [4]. In all other
cases when k 6= 0 or v 6= 0 there are some s values s ∈ [0, s0), where

s0 =
R2

ev
2h2 + h2

√
R4

ev
4 + 4k2 + R2

ev
2h2k2

2(4 + R2
ev

2h2)
, (14)

for which inequality (13) does not fulfill. As it follows from expression (14) s0 lies
in interval s0 ∈ (0,∞). For these cases we should solve inequality (12) in respect to µ.
That means semi-implicit central difference scheme (4) for the ADR equation (1) is only
conditionally stable.

Let us introduce such notation

a = R2
ev

2h2, b = kh2. (15)

Then we obtain such restriction from (12) for µ , where s ∈ [0, s0):

µ ≤ µ0(s) =
2b + 8s

b2 + 4as(1− s)− 16s2
, (16)

where, as we assumed b2 + 4as(1 − s) − 16s2 > 0. By using MATHEMATICAr in
order to obtain the maximal allowed µ for each a and b we find extremum s∗0:

s∗0 =
−4b− ab +

√
16ab + 4a2b + 4ab2 + a2b2

4(4 + a)
, (17)

for which the right side of inequality (16) reaches the minimum.
It should be noted that extremum s∗0 lies in the interval s∗0 ∈ (−∞, 1

2
], when a ∈ [0,∞)

and b ∈ [0,∞), which is partially out of the allowed values for s:

s ∈ [0, s0), if s0 < 1, (18)

s ∈ [0, 1], if s0 ≥ 1. (19)

Depending on s∗0, for different values of a and b we will obtain two criterions limiting
maximal τ . One of them follows for s∗0 values s∗0 ∈ (−∞, 0), and the next one for s∗0 ∈ [0, 1

2
].
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At first we will look at s∗0 in the interval s∗0 ∈ (−∞, 0). In this case extremum s∗0 is out
of the allowed values (18) or (19). Limiting τ should be found from min{µ0(0), µ0(s0)}
or min{µ0(0), µ0(s0), } depending on (18)-(19). It can be shown that µ0(0) < µ0(1) and
µ0(0) < µ0(s0). Namely, we have negative signs in the following expressions:

µ0(0)− µ0(1) = − (8b + 32)

(b2 − 16)b
, (20)

µ0(0)− µ0(s0) < 0, (21)

where the denominator of expression (20) is positive, as follows from the definition of
µ0(s) in (16), and inequality (21) fulfills, because:

lim
s→s0

µ0(s) →∞. (22)

So, right side of (16) is minimal, when limit value s = 0 will be substituted in it, i.e.
µ0 = µ0 (0). Moreover, taking into account (22), values of µ0(s), when s → s0, will be
omitted as a restriction for τ in further consideration.

Then, in respect to the expression (10) for µ, the stability condition for semi-implicit
central difference scheme for ADR equation from (16) may be written in a form:

τ ≤ 2

k
. (23)

The obtained inequality (23) for limiting τ is also true for the special case for diffusion
reaction equation, when v = 0, k 6= 0, because in this case s∗0 = − b

4
< 0.

Secondly, we consider s∗0 from the interval s∗0 ∈ [0, 1
2
]. In this case requiring in addition

s0 > 1
2
, after s is substituted by the extremum s∗0 in the right side of inequality (16),

for all values of v and k in respect to expressions for a and b from (15) for semi-implicit
central difference scheme we obtain the following limiting τ :

τ ≤ h2 min{µ0(0), µ0(s
∗
0)} =

min{2

k
,

4

4k + R2
ev

2(2 + kh2)−Rev
√

k(4 + kh2)(4 + R2
ev

2h2)
}. (24)

In the case s0 ∈ (0, 1
2
] and s∗0 > s0 we obtain stability condition (23) by substituting

s = 0 in the right side of inequality (16) for µ. When s0 ∈ (0, 1
2
] and s∗0 ∈ [0, s0) we obtain

stability condition (24) again.
In a special case for advection diffusion equation, when k = 0, v 6= 0, we obtain from

(24):

τ ≤ 2

R2
ev

2
. (25)

Inequalities (23), (24), and (25) are stability conditions for the semi-implicit difference
scheme, when at least one of the coefficients k and v are not equal to zero.
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3 Propagator difference scheme

In our propagator method solution is represented as multiplication of two functions

c = η (t, x) g (t, x) , (26)

where propagator function η is chosen in nonlocal way:

η = η0 +

∫ t

0

f

c
ηdt, η0 = const. (27)

It can be written

η =
l∑

n=0

ηn +

∫ t

tl

f

c
ηdt, ηn =

∫ tn+1

tn

f

c
ηdt, (28)

and assuming, that f
c

= const, t ∈ [tl, tl+1], l = 0, 1, 2, ..., M − 1, we have:

η =
l∑

n=0

ηn +
f

c

∫ t

tl

ηdt. (29)

The solution of equation (29) is:

η = ηl
iexp

(
f l+1

i

cl+1
i

(t− tl)

)
, ηl

i = exp

(
l∑

n=0

fn
i

cn
i

τn

)
. (30)

Substituting the obtained expression (30) for η(t, x) in (26) we get:

c = ηl
iexp

(
f l+1

i

cl+1
i

(t− tl)

)
g (t, x) . (31)

As a result, taking into account new expression (31) for c the equation (1) can be written:

η
∂g

∂t
=

∂2

∂x2
(ηg). (32)

By applying integro-interpolation method [9] a difference scheme for the equation (32)
can be obtained in such form:

ηl+1
i

gl+1
i − gl

i

τl+1

=
1

h∗i
(
C l+1

i+1 − C l+1
i

hi+1

− C l+1
i − C l+1

i−1

hi

),

h∗i =
1

2
(hi + hi+1) , (33)

or

1

h∗i hi+1

C l+1
i+1 +

1

h∗i hi

C l+1
i−1 − (

1

h∗i
(

1

hi+1

+
1

hi

) +
1

τl+1

)C l+1
i = −ηl+1

i

ηl
i

C l
i

τl+1

. (34)
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Equation (34) can be written in a simple way, taking into account
ηl+1

i

ηl
i

= exp
(

f l+1
i

Cl+1
i

τl+1

)
.

As a result, a new fully implicit propagator difference scheme for equation (32) in
respect to unknown C can be written in a final form:

Λ
(
C l+1,m+1

)
i
=

1

h∗i
BiC

l+1,m+1
i+1 +

1

h∗i
AiC

l+1,m+1
i−1 −QiC

l+1,m+1
i =

−exp

(
f l+1,m

i

C l+1,m
i

τl+1

)
C l

i

τl+1

, 1 ≤ i ≤ N − 1, 1 ≤ l ≤ M − 1 (35)

where

f l+1,m
i = −Rev

C l+1,m
i+1 − C l+1,m

i−1

2h∗i
− kC l+1,m

i , (36)

Ai =
1

hi

, Bi =
1

hi+1

, Qi =
1

h∗i
(Ai+1 + Bi−1) +

1

τl+1

, (37)

and m = 1, 2, 3, ... is an iteration index.
Finally, by assuming that (c0)i ≥ 0 for the initial condition (2), it can be concluded

that the difference scheme (35)-(37) is unconditionally monotone, since the coefficients
(37) of this scheme satisfy the maximal principle conditions [7], which are formulated as
follows.

Lemma 1 Let (c0)i ≥ 0, i = 0, 1, 2, ..., N then it follows that C l,m
i cannot assume a

minimum value that is negative at any of the nodes 0 ≤ i ≤ N for each time step 0 ≤ l ≤
M on the iteration m. That is C l,m

i ≥ 0, because [7]

Λ
(
C l+1,m+1

)
i
≤ 0, Ai > 0, Bi > 0, (38)

and

Qi =
1

h∗i
(Ai+1 + Bi−1) + Ξ, Ξ =

1

τl+1

≥ 0. (39)

To study the consistency, using specific non-regular grid ω, with τ1 = τ , and

τl+1

τl

= (1± o), o > 0, o → 0, (40)

for h1 = h, and
hi+1

hi

= (1± q), q > 0, q → 0, (41)

we examine the Taylor expansions of the C and f in the vicinity of the time and space
grid point (tl, xi). It can be shown that the semi-implicit propagator central difference
scheme (35)− (37) has a maximum first order truncation error in time and a second order
truncation error in space O (o + τ + q + qh + h2).
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4 Stability of the semi-implicit propagator difference

scheme

In the further consideration we will look only at semi-implicit difference scheme, which
can be obtained from (35) by assuming that the right side expression depends only from
the time on l level. Then, omitting iteration index m in (35), semi-implicit propagator
difference scheme with the same coefficients Ai, Bi, and Qi as in (37) can be written as
follows:

Λ
(
C l+1

)
i
=

1

h∗i
BiC

l+1
i+1 +

1

h∗i
AiC

l+1
i−1 −QiC

l+1
i =

−exp

(
f l

i

C l
i

τl

)
C l

i

τl+1

, 1 ≤ i ≤ N − 1, 1 ≤ l ≤ M − 1, (42)

with

f l
i = −Rev

C l
i+1 − C l

i−1

2h∗i
− kC l

i . (43)

To find a stability for the semi-implicit propagator difference scheme (42) − (43) we
will express solution of the scheme and forcing term in the form:

C l (x) = C̃ l (x) + δC l (x) , f l(x) = f̃ l(x) + δf l(x), (44)

where

δf =
∂f̃

∂C̃i+1

δCi+1 +
∂f̃

∂C̃i

δCi +
∂f̃

∂C̃i−1

δCi−1. (45)

In the expressions (44) C̃ is solution of difference scheme or estimation of the solution
and f̃ is the forcing term depending on C̃. As such C̃ estimation we will use known
particular analytical Domenico solution cd of the problem (1)− (2) from [2], [3]:

cd =
C0

8
e
− 1

2
Re

(
−1+

√
1+ 4k

R2
ev2

)
·v·x · erfc



−Re · t · v

√
1 + 4k

R2
e·v2 + x

2
√

t


 . (46)

By assuming C̃ = cd and using expressions (44), we have for the Taylor expansion of
the right side expression of equation (42):

exp

(
fi

Ci

τ

)
Ci

τ
=

(
f̃i +

(cd)i

τ
+

f̃ 2
i τ

2(cd)i

)
+

(
∂f̃i

∂C̃i+1

+
∂f̃i

∂C̃i+1

· f̃iτ

(cd)i

)
· δCi+1

+

(
∂f̃i

∂C̃i

+
1

τ
+

∂f̃i

∂C̃i

· f̃iτ

(cd)i

− f̃ 2
i τ

2(cd)2
i

)
· δCi

+

(
∂f̃i

∂C̃i−1

+
∂f̃i

∂C̃i−1

· f̃iτ

(cd)i

)
· δCi−1 + O(τ 2). (47)
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To make cd the solution of the difference scheme (42)−(43) we require that the regular

term
f̃2

i τ

2(cd)i
in the first bracket of the expression (47) should be small in respect to the

forcing term | f̃i |:
f̃ 2

i τ

2(cd)i

¿| f̃i |, or | f̃iτ

2(cd)i

| ¿ 1. (48)

By taking into account the estimation (48) and as a result, omitting small summands
of the right side of (47) , i.e. the third summand from the first and third brackets, the
second summand from the second and fourth brackets, and keeping only first order terms
in respect to τ we obtain:

exp

(
fi

Ci

τ

)
Ci

τ
=

(
f̃i +

(cd)i

τ

)
+

∂f̃i

∂C̃i+1

· δCi+1 +

+

(
∂f̃i

∂C̃i

+
1

τ
− f̃ 2

i τ

2(cd)2
i

)
· δCi +

∂f̃i

∂C̃i−1

· δCi−1. (49)

By taking into account expression (49) for the right side of difference scheme (42) we have
a difference scheme for the perturbations δC:

1

h∗i
BiδC

l+1
i+1 +

1

h∗i
AiδC

l+1
i−1 −QiδC

l+1
i = − ∂f̃ l

i

∂C̃ l
i+1

· δC l
i+1 +

(
− ∂f̃ l

i

∂C̃ l
i

− 1

τ
+ F̃ l

i τ

)
· δC l

i −
∂f̃ l

i

∂C̃ l
i−1

· δC l
i−1, (50)

where F̃ l
i = 1

2

(
f̃ l

i

(cd)l
i

)2

. By using the analytical Domenico solution (46) the function F̃ is:

F̃ =
eF̃1

(
2Rev + eF̃2

√
πtF̃3 · erfc(F̃4)

)2

8πt · erfc2(F̃4)
. (51)

For large positive F̃4 values, to avoid division by zero in (51), we use asymptotic
expression [10] for erfc and obtain such final form for function F̃ :

F̃ =

(
2RevF̃4

1+F̃5
· e F̃1

2
+F̃ 2

4 +
√

t · F̃3 · e
F̃1
2

+F̃2

)2

8t
, (52)

where

F̃1 = −1

2

(
4kt + R2

etv
2 − 2Revx

√
1 +

4k

R2
ev

2
+

x2

t

)
,

F̃2 =

(
x−Revt

√
1 + 4k

R2
ev2

)2

4t
, F̃3 = R2

ev
2 ·

(√
1 +

4k

R2
ev

2
− 1

)
− 2k,

F̃4 =
x−Revt ·

√
1 + 4k

R2
ev2

2
√

t
, F̃5 =

∞∑
m=1

(−1)m 1 · 3 · ... · (2m− 1)

(2F̃4)m
. (53)
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Now, using for the propagator difference scheme the analogous method as for the
central difference scheme, for G we obtain:

G =

√
(1− kτ − Fτ 2)2 + R2

ev2τ2

h2 sin2 ϕ
√

(1 + 4τ
h2 sin2 ϕ

2
)2

, F = min
0<i<N

F̃ l
i . (54)

From (54) follows the stability condition for µ:

µ(k2h4 − 2Fh4 + 4R2
ev

2h2s(1− s)− 16s2)− (2kh2 + 8s) + O(τ 2) ≤ 0. (55)

In order to find stability conditions we will look at each term in the inequality (55).
Firstly, we omit second order term in respect to τ , considering it is small in comparison
to others. The second term is always positive and we will look only at the first term in
this inequality.

4.1 The case of absolute stability for the propagator difference
scheme

The first term in inequality (55) is required to be negative. To fulfill this we rewrite the
first term of inequality (55) in such notation µΥ(s), where

Υ(s) = k2h4 − 2Fh4 + 4R2
ev

2h2s(1− s)− 16s2. (56)

Taking into account that µ is always positive we will require that:

Υ(s) ≤ 0. (57)

Then, if (57) fulfills, inequality (55) is true for all values of µ and the propagator difference
scheme (42) is absolutely stable.

It should be noted, that Υ(s) reaches the maximum in respect to s, when s = smax,
where smax = (R2

ev
2h2) / (2R2

ev
2h2 + 8). If inequality (57) fulfills for smax, the propagator

difference scheme is always stable. By inserting smax into (57) we get absolute stability
condition for the propagator difference scheme:

F ≥ 8

h4(4 + R2
ev

2h2)
+

k2h2 + R2
ev

2

2h2
− 2

h4
. (58)

In comparison to the central difference scheme the propagator difference scheme for
some region of parameters Re, k and v shows absolute stability features, when (58) fulfills.

4.2 Time step restrictions for the propagator difference scheme

In case, when condition (58) does not fulfill and Υ(s) > 0, there are some s values
s ∈ [0, sf ), where:

sf =
R2

ev
2h2 + h2

√
R4

ev
4 + 4k2 + R2

ev
2h2k2 − 8F − 2R2

ev
2h2F

2(4 + R2
ev

2h2)
, (59)
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for which we should solve inequality (55) in respect to µ in order to find stability con-
ditions. As it follows from (59), in case when k 6= 0 or v 6= 0, sf lies in the interval
sf ∈ [0,∞), because, if (58) does not fulfill, the subduplicate expression in (59) is posi-
tive. In respect to values of a and b from (15), for µ we obtain such restriction:

µ ≤ µf (s) =
2b + 8s

b2 − 2Fh4 + 4as(1− s)− 16s2
, (60)

where Υ(s) = b2 − 2Fh4 + 4as(1 − s) − 16s2 > 0 and s ∈ [0, sf ). In order to obtain
maximal allowed µ by using MATHEMATICAr for each a and b we find extremum s∗f :

s∗f =
−4b− ab +

√
16ab + 4a2b + 4ab2 + a2b2 + 32Fh4 + 8aFh4

4(4 + a)
, (61)

for which the right side of inequality (60) reaches the minimum.
For each a ∈ [0,∞) and each b ∈ [0,∞) it is true, that extremum s∗f ∈ (−∞,∞) is

partially out of the allowed values of s:

s ∈ [0, sf ), if sf < 1, (62)

s ∈ [0, 1], if sf ≥ 1. (63)

As in stability conditions for semi-implicit difference scheme we obtain two criterions
limiting maximal τ .

One of them follows for s∗f values s∗f ∈ (−∞, 0). Extremum s∗f is out of the al-
lowed values at (62) or (63). Limiting τ should be found as min{µf (0), µf (sf )} or
min{µf (0), µf (1)}. As in the case for central difference scheme the value of µf (s), when
s → sf , will be omitted. It can be shown that µf (0)− µf (1) < 0 for all allowed values of
F , when Υ(s) > 0. As the result µf (1) will be omitted also. The stability condition for
the propagator difference scheme for ADR equation is in form:

τ ≤ 2k

k2 − 2F
. (64)

By comparing to the stability criterion (23) for the central difference scheme restriction
for propagator difference scheme becomes more weak.

Secondly we consider s∗f ∈ [0,∞). In case sf < 1, after s is substituted by s∗f in the
right side of inequality (60) we obtain the following limiting τ :

τ ≤ h2 min{µf (0), µf (s
∗
f )} =

min{ 2k

k2 − 2F
,

1

k + 1
4
R2

ev
2(2 + kh2)− 1

4

√
(4 + R2

ev
2h2)(R2

ev
2k(4 + kh2) + 8F )

}.(65)

The denominator of second term in inequality (65) should always be positive, because
it is obtained from positive denominator of (60), by inserting s = s∗f and dividing with
the positive expression (2kh2 + 8s)h2. It can be proved also directly. By introducing a
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notation a1 = k + 1
4
R2

ev
2(2 + kh2) and b1 = 1

4

√
(4 + R2

ev
2h2)(R2

ev
2k(4 + kh2) + 4k2) we

can prove, that the denominator is always positive, because:

a1 − b1 =
a2

1 − b2
1

a1 + b1

. (66)

To find a sign of the denominator (65) we need to prove that a2
1 − b2

1 is positive. In order
to find it we use F − θ ,where θ is a small positive value and replace F by its limit value
from (58). Then, because a2

1 − b2
1 = 1

2
(4 + R2

ev
2h2) ∗ θ > 0, the sign of the denominator

(65) is positive.
In the case s∗f ≥ 1 or when sf ∈ [0, 1] and s∗f > sf we obtain previous criterion (64).
If sf ∈ [0, 1] and s∗f ≤ sf , restrictions for τ are as in expression (65).
In a special case for advection diffusion equation, when k = 0, v 6= 0, we obtain τ

restriction from (65) :

τ ≤ 2

R2
ev

2 −
√

2F (4 + R2
ev

2h2)
. (67)

The conditions (64), (65) and (67) are stability conditions for semi-implicit propagator
difference scheme. By inspecting all possible cases and comparing to stability conditions
for semi-implicit central difference scheme (23), (24), and (25) it is obvious that propagator
difference scheme, depending from the coefficients, can be absolutely stable when fulfills
(58) or gives less restriction for the time step.

Here we should mention that numerical calculations carried out by the difference
scheme (42)-(43) are in very well agreement with the proposed criterions (64), (65) and
(67), including the absolutely stability feature, when criterion (58) is fulfilled. However,
depended on a strategy of time step choice, relatively smooth transition from stability to
instability of the semi-implicit propagator difference scheme is observed in the vicinity of
time step τ criterions (64), (65) and (67). The time step from (64), (65) and (67) was used
as estimation in a program for solving the ADR equation with the proposed semi-implicit
propagator difference scheme (42)-(43).

Test examples for values of coefficients Re = 1, v = 1 and k = 1 were calculated, to
compare (46) Domenico analytical cd and the propagator difference scheme solutions, and
to confirm a precision order p of the difference scheme (42)-(43).

Results of the test example are in the Table 1, where N is the number of grid points,
eN is the maximal absolute error eN = max

l,i
eN(l, i), where eN(l, i) = |cd(tl, xi) − C l

i |,
and rN = eN/ max

tl,xi

(cd) is the maximal relative error of solutions. The maximal absolute

and relative errors for steady-state solutions are denoted as es
N , rs

N , and in the last two

columns order of difference scheme (42)-(43) precision p = ln
(

eN

e2N

)
/ln2 for non-stedy,

and ps = ln
(

es
N

es
2N

)
/ln2 for steady-state solutions is given. As it is shown in the table

precision of the propagator difference scheme is close to expected second order. To keep
the order of precision for large grids second order precision in time for difference scheme
is necessary.
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Table 1. Maximum errors and numerical orders for the difference scheme
(42)-(43)

N eN rN es
N rs

N p ps

21 1.860 · 10−5 2.635 · 10−4 2.684 · 10−6 1.510 · 10−5

41 4.704 · 10−6 6.710 · 10−5 6.739 · 10−7 3.792 · 10−6 1.983343 1.993778
81 1.234 · 10−6 1.784 · 10−5 1.714 · 10−7 9.644 · 10−7 1.930546 1.975160
161 3.663 · 10−7 5.532 · 10−6 4.571 · 10−8 2.571 · 10−7 1.752245 1.906785
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Anotācija. Piedāvāta propogatora metode advekcijas-difūzijas reakcijas vienādojuma
skaitliskai risināšanai, noteikti un sal̄ıdzināti stabilitātes nosac̄ıjumi pusaizklātai propa-
gatora un centrālajai diferenču shēmām. Tiek pierād̄ıtas jaunās propagatora metodes
priekšroc̄ıbas- metode ir vai nu absolūti stabila vai ar̄ı uzrāda mazākus ierobežojumus
laika soļa izvēlē sal̄ıdzinājumā ar pusaizklāto centrālo diferenču shēmu. Ir pierād̄ıta prop-
agatora shēmas absolūtā monotonitāte, kā ar̄ı pirmās kārtas telpā un otrās kārtas laikā
aproksimācija.
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