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On three-point boundary value problems

A.Ja. Lepin

Summary. We provide the conditions for solvability of the boundary value problem
x′′ = g(t, x, x′) + h(t, x, x′), p x(0) + x′(0) = 0, Hx = 0.
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1 Introduction

In the work [1] the existence of a solution to the boundary value problem

x′′ = g(t, x, x′) + h(t, x, x′), t ∈ I := [0, 1],
p x(0) + x′(0) = 0, x(1) = αx(η), α ≤ 0, 0 < η < 1

was proved under the assumptions that

x′g(t, x, x′) ≤ 0,
|h(t, x, x′)| ≤ a(t)|x|+ b(t)|x′|+ u(t)|x|r + v(t)|x′|k + e(t), 0 ≤ r, k < 1,
(|p|+ a1)e

b1 < 1, a1 = ‖a(t)‖1, b1 = ‖b(t)‖1.

Moreover, the existence of a positive solution to the boundary value problem

x′′ + g(t)f(x, x′) = 0, x′(0) = 0, x(1) = αx(η), α, η ∈ (0, 1),

where g ∈ C(I, [0, +∞)), f ∈ C([0, +∞)× (−∞, 0], [0, +∞)), was obtained. Three- and
multipoint boundary value problems were considered in the works [2] - [10].

Our purpose in this paper is twofold. First, we show that the conditions (p++a1)e
b1 <

1, where p+ = max{0, p}, or (p+ + a1)e
b1 = 1 and a1 + b1 > 0 imply the existence of

a solution to the problem (1). It is possible to construct counterexample which shows
that for a1 = b1 = 0 and p = 1 the problem has not a solution. Counterexample can
be constructed also which shows that the problem has not a solution if the condition
(p+ + a1)e

b1 > 1 holds.
Second, we provide conditions for existence of a positive solution. These conditions

differs slightly from the conditions of Theorem 3.2 in [1] and cannot be improved. This
is confirmed by construction the respective examples.
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2 Setting of a problem

Consider the problem
x′′ = g(t, x, x′) + h(t, x, x′), t ∈ I, (1)

p(x(0)) + x′(0) = 0, Hx = 0, (2)

where functions g and h satisfy the Caratheodory conditions, p ∈ C(R, R) and H ∈
C(C1(I, R), R).

We assume that the following conditions hold:
(1) x′ g(t, x, x′) ≤ 0, (t, x, x′) ∈ I ×R2;
(2) There exist functions a, b, c, d ∈ L1(I, [0, +∞)) such that for any ε > 0 there exists
e ∈ L1(I, [0, +∞)) such that

|h(t, x, x′)| ≤ (a(t) + εc(t)) |x|+ (b(t) + εd(t))|x′|+ e(t),

holds for any (t, x, x′) ∈ I ×R2;
(3) There exist p+, q ∈ [0, +∞) such that

p (N) ≥ p+N − q, N ≤ 0, p(N) ≤ p+N + q, N ≥ 0.

(4) There exist N0 ≥ 0 such that for any x ∈ C1(I, R)

(∀t ∈ I)(x(t) > N0) ⇒ Hx ≥ 0, (∀t ∈ I)(x(t) < −N0) ⇒ Hx ≤ 0.

Lemma 2.1 Let a, b, e ∈ L1(I, [0, +∞)), x0, x1 ∈ R. Suppose that the estimate

|h(t, x, x′)| ≤ a(t)|x|+ b(t)|x′|+ e(t), (t, x, x′) ∈ I ×R2

holds. Then a solution x of the Cauchy problem

x′′ = g(t, x, x′) + h(t, x, x′), x(0) = x0, x′(0) = x1

extends to the interval I and satisfies the estimates −y ≤ x ≤ y, where y is a solution to
the Cauchy problem

y′′ = a(t)y + b(t)y′ + e(t), y(0) = |x0|, y′(0) = |x1|.

Proof. Let us show that boundedness of a solution x(t) in I implies boundedness of
a derivative x′(t). Suppose the contrary is true. Consider the case

x : [0, τ) → R, τ ∈ (0, 1], sup{|x(t)| : t ∈ [0, τ)} < +∞, lim
t→τ

x′(t) = +∞.

Let t1 ∈ (0, τ) be such that

x′(t) > 0, t ∈ (t1, τ),

∫ τ

t1

b(t) dt <
1

2
.

The inequality

x′′(t) = g(t, x(t), x′(t)) + h(t, x(t), x′(t)) ≤ h(t, x(t), x′(t))
≤ a(t)|x(t)|+ b(t)|x′(t)|+ e(t), t ∈ (t1, τ)
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implies that

x′(t2)− x′(t1) ≤
∫ t2

t1

(a(t)|x(t)|+ e(t)) dt +
x′(t2)

2

for t2 ∈ (t1, τ) such that x′(t2) = max{x′(t) : t ∈ [t1, t2]}. This inequality is impossible
for sufficiently large x′(t2). The case of limt→τ x′(t) = −∞ can be considered in a similar
way.

Choose ε > 0 and let yε be a solution of the Cauchy problem

y′′ = a(t)y + b(t)y′ + e(t), y(0) = |x0|, y′(0) = |x1|+ ε.

We wish to show that the inequalities −yε ≤ x ≤ yε hold for any ε > 0. Then the estimates
−y ≤ x ≤ y are evident. Consider the case of existing τ ∈ (0, 1) such that y′ε(τ) = x′(τ)
and

− y′ε(t) < x′(t) < y′ε(t), t ∈ (0, τ). (3)

Choose t1 ∈ (0, τ) such that x′(t) > 0, t ∈ (t1, τ). Then

x′′(t) = g(t, x(t), x′(t)) + h(t, x(t), x′(t)) ≤ h(t, x(t), x′(t))
≤ a(t)|x(t)|+ b(t)x′(t) + e(t) ≤ a(t)yε(t) + b(t)y′ε(t) + e(t) = y′′ε (t), t ∈ (t1, τ).

Therefore either x′(τ) − x′(t1) ≤ y′ε(τ) − y′ε(t1) or y′ε(t1) ≤ x′(t1), which contradicts the
inequalities (3).

The case of −y′ε(τ) = x′(τ) can be considered in a similar way. ¤

Lemma 2.2 Let a, b, e ∈ L1(I, [0, +∞)), N > 0 and the estimate

|h(t, x, x′)| ≤ a(t)|x|+ b(t)|x′|+ e(t), (t, x, x′) ∈ I ×R2

hold. If (p+ + a1 + e1+q
N

) eb1 < 1, where e1 = ‖e(t)‖1, then a solution x of the Cauchy
problem

x′′ = g(t, x, x′) + h(t, x, x′), x(0) = −N, x′(0) = −p(−N)

satisfies the estimate

x(t) ≤ −N + t(Np+ + Na1 + e1 + q) eb1 , t ∈ I. (4)

Proof. Consider the case of x′(t) ≥ 0, t ∈ I. Then

x′′(t) = g(t, x(t), x′(t)) + h(t, x(t), x′(t)) ≤ h(t, x(t), x′(t))
≤ −a(t)|x(t)|+ b(t)x′(t) + e(t) ≤ b(t)x′(t) + a(t)N + e(t), t ∈ I.

A solution y(t) of the Cauchy problem

y′(t) = b(t)y(t) + a(t)N + e(t), y(0) = p+N + q (5)

by comparison theorem satisfies the inequality x′(t) ≤ y(t), t ∈ I. The explicit formula
for a solution of the problem (5) is

y(t) = (p+N + q) exp

∫ t

0

b(s) ds +

∫ t

0

(a(s)N + e(s)) exp(

∫ t

0

b(ξ) dξ) ds. (6)
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It follows from (6) that

y(t) ≤ (Np+ + q + Na1 + e1)e
b1 , t ∈ I. (7)

The estimate (4) follows.
Consider the case of x(t) ≥ −N, t ∈ I. Let T = {t ∈ (0, 1) : x′(t) > 0}. It is clear

that T is an open set, which is a sum of disjoint open intervals. Let (t1, t2) be such an
interval. If t1 = 0, then the proof is similar to the previous one. If t1 > 0, the x′(t1) = 0
and the estimate in [t1, t2] can be obtained like previously. Hence the estimate (7) follows.

Consider the case of min{x(t) : t ∈ I} < −N. Let x(t1) = −N1 < −N. Then the
estimate

x(t) ≤ −N1 + (t− t1)(N1a1 + e1)e
b1 ≤ −N + (t− t1)(N1a1 + e1)e

b1 , t ∈ [t1, t2].

The estimate (4) follows. ¤

Lemma 2.3 Suppose there exist two solutions x1 and x2 of equation (1) such that

p(x1(0)) + x′1(0) = p(x2(0)) + x′2(0) = 0, Hx1Hx2 ≤ 0.

Then there exist a solution of the problem (1), (2).

Proof. Let x1(0) ≤ x2(0) and denote by S a set of solutions of equation (1) which
satisfy the conditions

p(x(0)) + x′(0) = 0, x1(0) ≤ x(0) ≤ x2(0).

Since S is a connected set and x1, x2 ∈ S there exists x ∈ S such that Hx = 0. ¤

Theorem 2.1 Suppose that (p+ + a1)e
b1 < 1. Then there exists a solution to the problem

(1), (2).

Proof. Let ε > 0 be such that the inequality

(p+ + a1 + εc1)e
b1+εd1 < 1

holds, where c1 = ‖c(t)‖1 and d1 = ‖d(t)‖1. Let e(t) be a function from the condition 2.
Choose N > 0 such that the inequalities

(p+ + a1 + εc1 +
e1 + q

N
)eb1+εd1 < 1,

N − (N(p+ + q1 + εc1) + e1 + q)eb1+εd1 > N0

hold, where e1 = ‖e(t)‖1. The estimate

x1(t) ≤ −N + t(N(p+ + a1 + εc1) + e1 + q)eb1+εd1 < −N0, t ∈ I

follows from Lemma 2.2 for a solution x1 of the Cauchy problem

x′′ = g(t, x, x′) + h(t, x, x′), x(0) = −N, x′(0) = −p(−N).

Similarly the estimate x2(t) > N0, t ∈ I can be obtained for a solution x2 of the Cauchy
problem

x′′ = g(t, x, x′) + h(t, x, x′), x(0) = N, x′(0) = −p(N).

Then solvability of the problem (1), (2) follows from Lemma 2.3. ¤
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Theorem 2.2 Suppose that (p+ +a1)e
b1 = 1 and a1 +b1 > 0. Then there exists a solution

to the problem (1), (2).

Proof. Consider the case of a1 > 0. Pick τ ∈ (0, 1) such that
∫ τ

0
a(t) dt = a1

2
. It

follows from the condition 2 and Lemma 2.2 that

x(t) ≤ −N + t(N(p+ +
a1

2
+ εc1) + e1 + q)eb1 , t ∈ [0, τ ],

x(t) ≤ −N + τ(N(p+ + a1

2
+ εc1) + e1 + q)eb1

+(t− τ)(N(p+ + a1 + εc1) + e1 + q)eb1

= −N + t(N(p+ + a1

2
+ εc1) + e1 + q)eb1 − τNa1

eb1

2
, t ∈ [τ, 1].

Choose ε > 0 and N > 0 such that the inequalities

εc1 − τ
a1

2
< 0, (N(εc1 − τ

a1

2
) + e1 + q)eb1 < −N0.

Solutions x1 and x2 can be constructed as in the proof of Theorem 2.1. Solvability of the
boundary value problem (1), (2) follows from Lemma 2.3. The cases of a1 = 0 and b1 > 0
can be considered as above. ¤

Examples. The examples below show that the estimates of theorems 2.1 and 2.2 are
best possible.

Let a1 = b1 = 0 and p(N) = N. Then a solution of the Cauchy problem

x′′ = 2, x(0) = c, x′(0) = −c

has the form x(t) = t2 − ct + c and x(1) = 1. Therefore the BVP

x′′ = 2, x(0) + x′(0) = 0, x(1) = 0

has not solutions.
Let (p+ + a1)e

b1 > 1, δ ∈ (0, 1
4
) and g(t, x′) = max{0,−2δ−1x′3}, t ∈ [0, δ),

g(t, x′) = 0, t ∈ [δ, 1], h(t, x, x′) = 0, t ∈ [0, δ) ∪ [4δ, 1],
h(t, x, x′) = δ−1, t ∈ [δ, 2δ), h(t, x, x′) = max{0,−a1δ

−1x}, t ∈ [2δ, 3δ), h(t, x, x′) =
b1δ

−1x′, t ∈ [3δ, 4δ).
Then a solution of the Cauchy problem

x′′ = g(t, x′) + h(t, x, x′), x(0) = c, x′(0) = −p+c

satisfies the condition x(1) > 0. Therefore the BVP

x′′ = g(t, x′) + h(t, x, x′), p+x(0) + x′(0) = 0, x(1) = 0

has not a solution.

Theorem 2.3 Let y be a solution of the Cauchy problem

y′′ = −a(t)y + b(t)y′, y(0) = 1, y′(0) = −p+.

If y(t) > 0 for t ∈ I then the BVP (1), (2) has a solution.
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Proof. Choose ε > 0 such that for e∗ ∈ L(I, [0, +∞)), ‖e∗‖1 < ε a solution of the
Cauchy problem

y′′ε = −(a(t) + εc(t))yε + (b(t) + εd(t))y′ε − e∗(t), yε(0) = 1, y′ε(0) = −p+ − ε

satisfies the inequality yε > y(1)
2

. The constants c and d are the same as appaer il the
condition 2. For ε given we find the appropriate e(t) using the condition 2. Consider
solutions of the following problems

x′′1 = g(t, x1, x
′
1) + h(t, x1, x

′
1), x1(0) = N, x′1(0) = −p(N), N ∈ (

q

ε
, +∞),

y′′∗ = −(a(t) + εc(t))y∗ + (b(t) + εd(t))y′∗ −
e(t)

x1(t)
, y∗(0) = 1, y′∗(0) = −p+ − ε.

Let us show that z = x′1y∗ − y′∗x1 ≥ 0. Indeed, z(0) = x′1(0)y∗(0)− y′∗(0)x1(0) ≥ −p+N −
q + (p+ + ε)N > 0. Let t1 = sup{t ∈ I : (∀τ ∈ [0, t])(z(τ) ≥ 0)}. Notice that if z ≥ 0

in the interval [0, t1] then
x′1
x1
≥ y′∗

y∗
and (ln x1)

′ ≥ (ln y∗)′. Integration from 0 to t yields

ln x1(t)− ln x1(0) ≥ ln y∗(t)− ln y∗(0). Therefore x1(t)
x1(0)

≥ y∗(t)
y∗(0)

or x1(t) ≥ Ny∗(t). If t1 = 1,

then z ≥ 0. Let t1 ∈ (0, 1). If x1(t1) ≥ 0, then z(t1) = x′1(t1)y∗(t1) − y′∗(t1)x1(t1) ≥
x′1(t1)y∗(t1) + (p+ + ε)x(t1) > 0, and this contradicts the definition of t1. In case of
x′1(t1) < 0 choose t2 ∈ (t1, 1) such that x1(t) ≤ 0, t ∈ (t1, t2). Then the relations

x′′1 = g(t, x1, x
′
1) + h(t, x1, x

′
1) ≥ h(t, x1, x

′
1)

≥ −(a(t) + εc(t))x1 + (b(t) + εd(t))x′1 − e(t),

y′′∗ = −(a(t) + εc(t))y∗ + (b(t) + εd(t))y′∗ −
e(t)

x1(t)

hold in the interval [t1, t2]. A constant N here must be such that N > ‖2 e(t)
y(1)
‖1ε

−1.
Multiplying the inequality above by y∗, the equality above by x1 and subtracting the
latter from the first one obtains that

x′′1y∗ − y′′∗x1 ≥ (b(t) + εd(t))(x′1y∗ − y′∗x1)− e(t)y∗ + e(t)
≥ (b(t) + εd(t))(x′1y∗ − y′∗x1).

Hence x′′1y∗−y′′∗x1 = (x′1y∗−y′∗x1)
′ = z′ ≥ (b(t)+εd(t))z and z(t1) ≥ 0. By the comparison

theorem z(t) ≥ 0, t ∈ [t1, t2], which contradicts the definition of t1. Using the same type
arguments one yields from z ≥ 0 that x1 ≥ Ny∗. If Ny∗(1) > N0, then x1 > N0. Similarly
x2 can be found as a solution of the BVP

x′′2 = g(t, x2, x
′
2) + h(t, x2, x

′
2), x2(0) = −N, x′2(0) = −p(−N).

It is clear that x2 < −N0. Solvability of the BVP (1), (2) follows from Lemma 2.3. ¤

Theorem 2.6 of the work [1] contains the following conditions for solvability of the
BVP

x′′ = f(t, x, x′) + e(t), f = g + h,
x(0) = 0, x(1) = αx(η), α ∈ R \ {η−1}, η ∈ (0, 1) :

(8)
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1. (∃M1 > 0)(|p| > M1 ⇒ f(t, x, p) + e(t) 6= 0),
2. (∃M2 > 0)(|p| > M2 ⇒ pf(0, 0, p) ≥ 0),
3. p g(t, x, p) ≤ 0,
4. |h(t, x, p)| ≤ a(t)|x|+ b(t)|p|+u(t)|x|r + v(t)|p|k + c(t), a, b, u, v, c ∈ L1, 0 ≤ r, k ≤ 1,
5. (C0 + a1)e

b1 < 1, a1 = ‖a(t)‖1, b1 = ‖b(t)‖1,
where

C0 =





0, α ≤ 1,
α− 1

α(1− η)
, 1 < α < η−1,

1

αη
, α > η−1.

The following example shows that formulation of theorem 2.6 in [1] needs to be made
more precise.

Consider
x′′ = min{0,−6l3x′3 max{0, x}} − 1, l > 0,

x(0) = 0, x(1) = αx(η).

Suppose that η is fixed. Then for any ε > 0 there exists l such that the problem (8) has
a solution only for α ∈ (η−1, η−2 + ε).

3 Existence of a positive solution

Consider the boundary value problem

x′′ + g(t)f(x, x′) = 0, x′(0) = 0, x(1) = αx(η), (9)

where g ∈ L1(I, [0, +∞)), f ∈ C([0, +∞)× (−∞, 0], [0, +∞)) and α, η ∈ (0, 1).

Theorem 3.1 Suppose the conditions
1.

∫ 1

0
g(t) dt = 1,

2. (∀x1, x2 ∈ [0, +∞))(∀x′1, x′2 ∈ (−∞, 0])(x1 ≤ x2 ∧ x′1 ≤ x′2 ⇒ f(x1, x
′
1) ≤ f(x2, x

′
2)),

3. f(0, 0) > 0,
4. (∃H > 0)(∀x ≥ H)(f(x, 0) ≤ Dx), D ∈ (0, 1−α

1−αη
]

are fulfilled.
Then the BVP (9) has a positive solution.

Proof. Define f(x, x′) for x < 0 by the formula f(x, x′) = f(0, x′). Consider solutions
xN of the Cauchy problems

x′′ + g(t)f(x, x′) = 0, x(0) = N, x′(0) = 0

for N > 0. If N is sufficiently small then the graph of a solution xN crosses the t-axis.
Consider behavior of xN for N great. The estimates x′N ≥ −ND and xN(t) ≥ N −NDt,
t ∈ I can be obtained repeating the arguments of the proof of Lemma 2.2. Therefore
xN(t) > 0 for N sufficiently large. Then a solution xN exists such that xN(1) = 0. If
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uniqueness of solutions of initial value problems is presupposed then a solution of the
BVP (9) exists for α ∈ (0, 1−D

1−Dη
]. Indeed, the ratio xN (1)

xN (η)
satisfies the inequality

xN(1)

xN(η)
≥ xN(η)−ND 1−η

xN (η)
= 1−ND 1−η

xN (η)

≥ 1−ND
1− η

N(1−Dη)
=

1−D

1−Dη

under the condition that x′N ≥ −ND. By using the approximation procedure of f(x, x′)
by the functions fn(x, x′), which satisfy the Lipschitz condition and the conditions 2 to
4 of the theorem, one can obtain a sequence of positive solutions xn of boundary value
problems

x′′ + g(t)fn(x, x′) = 0, x′(0) = 0, x(1) = αx(η),

which converges to a positive solution of the BVP (9).

Remark 1. The condition f(0, 0) > 0 is equivalent to the condition

(∃H1 > 0)(|x|+ |x′| ≤ H1 ⇒ |f(x, x′)| ≥ C(|x|+ |x′|), C > 0

of the theorem 3.2 of the work [1]. Indeed,

0 < CH1 ≤ |f(0,−H1)| = f(0,−H1) ≤ f(0, 0).

The opposite implication follows from the continuity of f.
The condition (∃H > 0)(∀x ≥ H)(f(x, 0) ≤ Dx) is equivalent to the condition

(∃H2 > 0)(|x|+ |x′| ≥ H2 ⇒ |f(x, x′)| ≤ D(|x|+ |x′|), b > 0

of the theorem 3.2 of the work [1]. Indeed,

|f(x, x′)| = f(x, x′) ≤ f(x, 0) ≤ bx ≤ D(|x|+ |x′|).

The opposite implication is evident.
Example. Consider

x′′ = gδ(t) max{1−D, Dx}, x(0) = 0, x(1) = αx(η), (10)

where δ ∈ (0, 1), gδ(t) = δ−1 for t ∈ [0, δ), g(t) = 0 for t ∈ [δ, 1], D, η ∈ (0, 1). Let us
show that for any ε > 0 there exists δ such that the problem (10) has not a solution for
α = 1−D

1−Dη
+ ε. Indeed, for sufficiently small δ a solution of the Cauchy problem

x′′ = gδ(t) max{1−D, Dx}, x(0) = 1, x′(0) = 0

is close to 1−Dt.

Remark 2. If g is fixed then the estimates for D and α can be improved. Let λ1 be
the first eigenvalue of the BVP

x′′ + λg(t)x = 0, x′(0) = 0, x(1) = 0,
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D ∈ (0, λ1) and y be a solution of the Cauchy problem

y′′ + g(t)Dy = 0, y(0) = 1, y′(0) = 0.

Then there exists a positive solution of the BVP (9) for α ∈ (0, y(1)
y(η)

). Indeed, let x stand
for a solution of the BVP

x′′ + g(t)f(x, x′) = 0, x(1) ≥ H, x′(0) = 0.

Then
x′′ + g(t)Dx ≥ 0, y′′ + g(t)Dy = 0.

One gets multiplying the first inequality by y, ten the second equality by x and subtracting
the second from the first that x′′y− y′′x = (x′y− y′x)′ ≥ 0. Integration from 0 to t yields
x′(t)y(t)−y′(t)x(t) ≥ 0 or x′

x
≥ y′

y
. Hence (ln x)′ ≥ (ln y)′. Integrating this inequality from

η to 1 one obtains ln x(1)− ln x(η) ≥ ln y(1)− ln y(η). Therefore x(1)
x(η)

≥ y(1)
y(η)

, which proves
the assertion.
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À. Ëåïèí. Î òðåõòî÷å÷íîé êðàåâîé çàäà÷å.
Àííîòàöèÿ.Óêàçàíû óñëîâèÿ ñóùåñòâîâàíèÿ ðåøåíèÿ êðàåâîé çàäà÷è x′′ = g(t, x, x′)+

h(t, x, x′), p x(0) + x′(0) = 0, Hx = 0.
ÓÄÊ 517.927

A. Lepins. Par vienu trispunktu robez̆problēmu.
Anotācija. Tiek doti robez̆problēmas x′′ = g(t, x, x′) + h(t, x, x′), p x(0) + x′(0) = 0,

Hx = 0 atrisinājuma eksistences nosac̄ıjumi.
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