On three-point boundary value problems

A.Ja. Lepin

Summary. We provide the conditions for solvability of the boundary value problem $x^{\prime \prime}=g\left(t, x, x^{\prime}\right)+h\left(t, x, x^{\prime}\right), p x(0)+x^{\prime}(0)=0, \quad H x=0$.

Key words: boundary value problem, solvability
AMS Subject Classification: 34 B 15

1 Introduction

In the work [1] the existence of a solution to the boundary value problem

$$
\begin{aligned}
& x^{\prime \prime}=g\left(t, x, x^{\prime}\right)+h\left(t, x, x^{\prime}\right), \quad t \in I:=[0,1], \\
& p x(0)+x^{\prime}(0)=0, \quad x(1)=\alpha x(\eta), \quad \alpha \leq 0, \quad 0<\eta<1
\end{aligned}
$$

was proved under the assumptions that

$$
\begin{aligned}
& x^{\prime} g\left(t, x, x^{\prime}\right) \leq 0 \\
& \left|h\left(t, x, x^{\prime}\right)\right| \leq a(t)|x|+b(t)\left|x^{\prime}\right|+u(t)|x|^{r}+v(t)\left|x^{\prime}\right|^{k}+e(t), \quad 0 \leq r, k<1 \\
& \left(|p|+a_{1}\right) e^{b_{1}}<1, \quad a_{1}=\|a(t)\|_{1}, \quad b_{1}=\|b(t)\|_{1}
\end{aligned}
$$

Moreover, the existence of a positive solution to the boundary value problem

$$
x^{\prime \prime}+g(t) f\left(x, x^{\prime}\right)=0, \quad x^{\prime}(0)=0, x(1)=\alpha x(\eta), \quad \alpha, \eta \in(0,1)
$$

where $g \in C(I,[0,+\infty)), \quad f \in C([0,+\infty) \times(-\infty, 0],[0,+\infty))$, was obtained. Three- and multipoint boundary value problems were considered in the works [2] - [10].

Our purpose in this paper is twofold. First, we show that the conditions $\left(p_{+}+a_{1}\right) e^{b_{1}}<$ 1 , where $p_{+}=\max \{0, p\}$, or $\left(p_{+}+a_{1}\right) e^{b_{1}}=1$ and $a_{1}+b_{1}>0$ imply the existence of a solution to the problem (1). It is possible to construct counterexample which shows that for $a_{1}=b_{1}=0$ and $p=1$ the problem has not a solution. Counterexample can be constructed also which shows that the problem has not a solution if the condition $\left(p_{+}+a_{1}\right) e^{b_{1}}>1$ holds.

Second, we provide conditions for existence of a positive solution. These conditions differs slightly from the conditions of Theorem 3.2 in [1] and cannot be improved. This is confirmed by construction the respective examples.

2 Setting of a problem

Consider the problem

$$
\begin{gather*}
x^{\prime \prime}=g\left(t, x, x^{\prime}\right)+h\left(t, x, x^{\prime}\right), \quad t \in I, \tag{1}\\
p(x(0))+x^{\prime}(0)=0, H x=0, \tag{2}
\end{gather*}
$$

where functions g and h satisfy the Caratheodory conditions, $p \in C(R, R)$ and $H \in$ $C\left(C^{1}(I, R), R\right)$.

We assume that the following conditions hold:
(1) $x^{\prime} g\left(t, x, x^{\prime}\right) \leq 0, \quad\left(t, x, x^{\prime}\right) \in I \times R^{2}$;
(2) There exist functions $a, b, c, d \in L_{1}(I,[0,+\infty))$ such that for any $\varepsilon>0$ there exists $e \in L_{1}(I,[0,+\infty))$ such that

$$
\left|h\left(t, x, x^{\prime}\right)\right| \leq(a(t)+\varepsilon c(t))|x|+(b(t)+\varepsilon d(t))\left|x^{\prime}\right|+e(t),
$$

holds for any $\left(t, x, x^{\prime}\right) \in I \times R^{2}$;
(3) There exist $p_{+}, q \in[0,+\infty)$ such that

$$
p(N) \geq p_{+} N-q, \quad N \leq 0, p(N) \leq p_{+} N+q, N \geq 0
$$

(4) There exist $N_{0} \geq 0$ such that for any $x \in C^{1}(I, R)$

$$
(\forall t \in I)\left(x(t)>N_{0}\right) \Rightarrow H x \geq 0,(\forall t \in I)\left(x(t)<-N_{0}\right) \Rightarrow H x \leq 0
$$

Lemma 2.1 Let $a, b, e \in L_{1}(I,[0,+\infty)), x_{0}, x_{1} \in R$. Suppose that the estimate

$$
\left|h\left(t, x, x^{\prime}\right)\right| \leq a(t)|x|+b(t)\left|x^{\prime}\right|+e(t), \quad\left(t, x, x^{\prime}\right) \in I \times R^{2}
$$

holds. Then a solution x of the Cauchy problem

$$
x^{\prime \prime}=g\left(t, x, x^{\prime}\right)+h\left(t, x, x^{\prime}\right), \quad x(0)=x_{0}, x^{\prime}(0)=x_{1}
$$

extends to the interval I and satisfies the estimates $-y \leq x \leq y$, where y is a solution to the Cauchy problem

$$
y^{\prime \prime}=a(t) y+b(t) y^{\prime}+e(t), \quad y(0)=\left|x_{0}\right|, \quad y^{\prime}(0)=\left|x_{1}\right| .
$$

Proof. Let us show that boundedness of a solution $x(t)$ in I implies boundedness of a derivative $x^{\prime}(t)$. Suppose the contrary is true. Consider the case

$$
x:[0, \tau) \rightarrow R, \tau \in(0,1], \sup \{|x(t)|: t \in[0, \tau)\}<+\infty, \lim _{t \rightarrow \tau} x^{\prime}(t)=+\infty
$$

Let $t_{1} \in(0, \tau)$ be such that

$$
x^{\prime}(t)>0, t \in\left(t_{1}, \tau\right), \int_{t_{1}}^{\tau} b(t) d t<\frac{1}{2} .
$$

The inequality

$$
\begin{aligned}
x^{\prime \prime}(t) & =g\left(t, x(t), x^{\prime}(t)\right)+h\left(t, x(t), x^{\prime}(t)\right) \leq h\left(t, x(t), x^{\prime}(t)\right) \\
& \leq a(t)|x(t)|+b(t)\left|x^{\prime}(t)\right|+e(t), \quad t \in\left(t_{1}, \tau\right)
\end{aligned}
$$

implies that

$$
x^{\prime}\left(t_{2}\right)-x^{\prime}\left(t_{1}\right) \leq \int_{t_{1}}^{t_{2}}(a(t)|x(t)|+e(t)) d t+\frac{x^{\prime}\left(t_{2}\right)}{2}
$$

for $t_{2} \in\left(t_{1}, \tau\right)$ such that $x^{\prime}\left(t_{2}\right)=\max \left\{x^{\prime}(t): t \in\left[t_{1}, t_{2}\right]\right\}$. This inequality is impossible for sufficiently large $x^{\prime}\left(t_{2}\right)$. The case of $\lim _{t \rightarrow \tau} x^{\prime}(t)=-\infty$ can be considered in a similar way.

Choose $\varepsilon>0$ and let y_{ε} be a solution of the Cauchy problem

$$
y^{\prime \prime}=a(t) y+b(t) y^{\prime}+e(t), \quad y(0)=\left|x_{0}\right|, y^{\prime}(0)=\left|x_{1}\right|+\varepsilon .
$$

We wish to show that the inequalities $-y_{\varepsilon} \leq x \leq y_{\varepsilon}$ hold for any $\varepsilon>0$. Then the estimates $-y \leq x \leq y$ are evident. Consider the case of existing $\tau \in(0,1)$ such that $y_{\varepsilon}^{\prime}(\tau)=x^{\prime}(\tau)$ and

$$
\begin{equation*}
-y_{\varepsilon}^{\prime}(t)<x^{\prime}(t)<y_{\varepsilon}^{\prime}(t), \quad t \in(0, \tau) \tag{3}
\end{equation*}
$$

Choose $t_{1} \in(0, \tau)$ such that $x^{\prime}(t)>0, t \in\left(t_{1}, \tau\right)$. Then

$$
\begin{aligned}
& x^{\prime \prime}(t)=g\left(t, x(t), x^{\prime}(t)\right)+h\left(t, x(t), x^{\prime}(t)\right) \leq h\left(t, x(t), x^{\prime}(t)\right) \\
& \leq a(t)|x(t)|+b(t) x^{\prime}(t)+e(t) \leq a(t) y_{\varepsilon}(t)+b(t) y_{\varepsilon}^{\prime}(t)+e(t)=y_{\varepsilon}^{\prime \prime}(t), \quad t \in\left(t_{1}, \tau\right) .
\end{aligned}
$$

Therefore either $x^{\prime}(\tau)-x^{\prime}\left(t_{1}\right) \leq y_{\varepsilon}^{\prime}(\tau)-y_{\varepsilon}^{\prime}\left(t_{1}\right)$ or $y_{\varepsilon}^{\prime}\left(t_{1}\right) \leq x^{\prime}\left(t_{1}\right)$, which contradicts the inequalities (3).

The case of $-y_{\varepsilon}^{\prime}(\tau)=x^{\prime}(\tau)$ can be considered in a similar way.
Lemma 2.2 Let $a, b, e \in L_{1}(I,[0,+\infty)), N>0$ and the estimate

$$
\left|h\left(t, x, x^{\prime}\right)\right| \leq a(t)|x|+b(t)\left|x^{\prime}\right|+e(t), \quad\left(t, x, x^{\prime}\right) \in I \times R^{2}
$$

hold. If $\left(p_{+}+a_{1}+\frac{e_{1}+q}{N}\right) e^{b_{1}}<1$, where $e_{1}=\|e(t)\|_{1}$, then a solution x of the Cauchy problem

$$
x^{\prime \prime}=g\left(t, x, x^{\prime}\right)+h\left(t, x, x^{\prime}\right), \quad x(0)=-N, x^{\prime}(0)=-p(-N)
$$

satisfies the estimate

$$
\begin{equation*}
x(t) \leq-N+t\left(N p_{+}+N a_{1}+e_{1}+q\right) e^{b_{1}}, \quad t \in I \tag{4}
\end{equation*}
$$

Proof. Consider the case of $x^{\prime}(t) \geq 0, t \in I$. Then

$$
\begin{aligned}
& x^{\prime \prime}(t)=g\left(t, x(t), x^{\prime}(t)\right)+h\left(t, x(t), x^{\prime}(t)\right) \leq h\left(t, x(t), x^{\prime}(t)\right) \\
& \leq-a(t)|x(t)|+b(t) x^{\prime}(t)+e(t) \leq b(t) x^{\prime}(t)+a(t) N+e(t), \quad t \in I .
\end{aligned}
$$

A solution $y(t)$ of the Cauchy problem

$$
\begin{equation*}
y^{\prime}(t)=b(t) y(t)+a(t) N+e(t), \quad y(0)=p_{+} N+q \tag{5}
\end{equation*}
$$

by comparison theorem satisfies the inequality $x^{\prime}(t) \leq y(t), t \in I$. The explicit formula for a solution of the problem (5) is

$$
\begin{equation*}
y(t)=\left(p_{+} N+q\right) \exp \int_{0}^{t} b(s) d s+\int_{0}^{t}(a(s) N+e(s)) \exp \left(\int_{0}^{t} b(\xi) d \xi\right) d s \tag{6}
\end{equation*}
$$

It follows from (6) that

$$
\begin{equation*}
y(t) \leq\left(N p_{+}+q+N a_{1}+e_{1}\right) e^{b_{1}}, \quad t \in I . \tag{7}
\end{equation*}
$$

The estimate (4) follows.
Consider the case of $x(t) \geq-N, t \in I$. Let $T=\left\{t \in(0,1): x^{\prime}(t)>0\right\}$. It is clear that T is an open set, which is a sum of disjoint open intervals. Let $\left(t_{1}, t_{2}\right)$ be such an interval. If $t_{1}=0$, then the proof is similar to the previous one. If $t_{1}>0$, the $x^{\prime}\left(t_{1}\right)=0$ and the estimate in $\left[t_{1}, t_{2}\right]$ can be obtained like previously. Hence the estimate (7) follows.

Consider the case of $\min \{x(t): t \in I\}<-N$. Let $x\left(t_{1}\right)=-N_{1}<-N$. Then the estimate

$$
x(t) \leq-N_{1}+\left(t-t_{1}\right)\left(N_{1} a_{1}+e_{1}\right) e^{b_{1}} \leq-N+\left(t-t_{1}\right)\left(N_{1} a_{1}+e_{1}\right) e^{b_{1}}, \quad t \in\left[t_{1}, t_{2}\right] .
$$

The estimate (4) follows.
Lemma 2.3 Suppose there exist two solutions x_{1} and x_{2} of equation (1) such that

$$
p\left(x_{1}(0)\right)+x_{1}^{\prime}(0)=p\left(x_{2}(0)\right)+x_{2}^{\prime}(0)=0, \quad H x_{1} H x_{2} \leq 0 .
$$

Then there exist a solution of the problem (1), (2).
Proof. Let $x_{1}(0) \leq x_{2}(0)$ and denote by S a set of solutions of equation (1) which satisfy the conditions

$$
p(x(0))+x^{\prime}(0)=0, \quad x_{1}(0) \leq x(0) \leq x_{2}(0) .
$$

Since S is a connected set and $x_{1}, x_{2} \in S$ there exists $x \in S$ such that $H x=0$.
Theorem 2.1 Suppose that $\left(p_{+}+a_{1}\right) e^{b_{1}}<1$. Then there exists a solution to the problem (1), (2).

Proof. Let $\varepsilon>0$ be such that the inequality

$$
\left(p_{+}+a_{1}+\varepsilon c_{1}\right) e^{b_{1}+\varepsilon d_{1}}<1
$$

holds, where $c_{1}=\|c(t)\|_{1}$ and $d_{1}=\|d(t)\|_{1}$. Let $e(t)$ be a function from the condition 2. Choose $N>0$ such that the inequalities

$$
\begin{gathered}
\left(p_{+}+a_{1}+\varepsilon c_{1}+\frac{e_{1}+q}{N}\right) e^{b_{1}+\varepsilon d_{1}}<1, \\
N-\left(N\left(p_{+}+q_{1}+\varepsilon c_{1}\right)+e_{1}+q\right) e^{b_{1}+\varepsilon d_{1}}>N_{0}
\end{gathered}
$$

hold, where $e_{1}=\|e(t)\|_{1}$. The estimate

$$
x_{1}(t) \leq-N+t\left(N\left(p_{+}+a_{1}+\varepsilon c_{1}\right)+e_{1}+q\right) e^{b_{1}+\varepsilon d_{1}}<-N_{0}, \quad t \in I
$$

follows from Lemma 2.2 for a solution x_{1} of the Cauchy problem

$$
x^{\prime \prime}=g\left(t, x, x^{\prime}\right)+h\left(t, x, x^{\prime}\right), \quad x(0)=-N, x^{\prime}(0)=-p(-N)
$$

Similarly the estimate $x_{2}(t)>N_{0}, t \in I$ can be obtained for a solution x_{2} of the Cauchy problem

$$
x^{\prime \prime}=g\left(t, x, x^{\prime}\right)+h\left(t, x, x^{\prime}\right), \quad x(0)=N, x^{\prime}(0)=-p(N) .
$$

Then solvability of the problem (1), (2) follows from Lemma 2.3.

Theorem 2.2 Suppose that $\left(p_{+}+a_{1}\right) e^{b_{1}}=1$ and $a_{1}+b_{1}>0$. Then there exists a solution to the problem (1), (2).

Proof. Consider the case of $a_{1}>0$. Pick $\tau \in(0,1)$ such that $\int_{0}^{\tau} a(t) d t=\frac{a_{1}}{2}$. It follows from the condition 2 and Lemma 2.2 that

$$
\begin{aligned}
& x(t) \leq-N+t\left(N\left(p_{+}+\frac{a_{1}}{2}+\varepsilon c_{1}\right)+e_{1}+q\right) e^{b_{1}}, \quad t \in[0, \tau], \\
x(t) & \leq-N+\tau\left(N\left(p_{+}+\frac{a_{1}}{2}+\varepsilon c_{1}\right)+e_{1}+q\right) e^{b_{1}} \\
& +(t-\tau)\left(N\left(p_{+}+a_{1}+\varepsilon c_{1}\right)+e_{1}+q\right) e^{b_{1}} \\
& =-N+t\left(N\left(p_{+}+\frac{a_{1}}{2}+\varepsilon c_{1}\right)+e_{1}+q\right) e^{b_{1}}-\tau N a_{1} \frac{e^{b_{1}}}{2}, \quad t \in[\tau, 1] .
\end{aligned}
$$

Choose $\varepsilon>0$ and $N>0$ such that the inequalities

$$
\varepsilon c_{1}-\tau \frac{a_{1}}{2}<0, \quad\left(N\left(\varepsilon c_{1}-\tau \frac{a_{1}}{2}\right)+e_{1}+q\right) e^{b_{1}}<-N_{0} .
$$

Solutions x_{1} and x_{2} can be constructed as in the proof of Theorem 2.1. Solvability of the boundary value problem (1), (2) follows from Lemma 2.3. The cases of $a_{1}=0$ and $b_{1}>0$ can be considered as above.

Examples. The examples below show that the estimates of theorems 2.1] and 2.2 are best possible.

Let $a_{1}=b_{1}=0$ and $p(N)=N$. Then a solution of the Cauchy problem

$$
x^{\prime \prime}=2, \quad x(0)=c, x^{\prime}(0)=-c
$$

has the form $x(t)=t^{2}-c t+c$ and $x(1)=1$. Therefore the BVP

$$
x^{\prime \prime}=2, \quad x(0)+x^{\prime}(0)=0, x(1)=0
$$

has not solutions.
Let $\left(p_{+}+a_{1}\right) e^{b_{1}}>1, \quad \delta \in\left(0, \frac{1}{4}\right)$ and $g\left(t, x^{\prime}\right)=\max \left\{0,-2 \delta^{-1} x^{\prime 3}\right\}, \quad t \in[0, \delta)$, $g\left(t, x^{\prime}\right)=0, t \in[\delta, 1], h\left(t, x, x^{\prime}\right)=0, t \in[0, \delta) \cup[4 \delta, 1]$, $h\left(t, x, x^{\prime}\right)=\delta^{-1}, \quad t \in[\delta, 2 \delta), \quad h\left(t, x, x^{\prime}\right)=\max \left\{0,-a_{1} \delta^{-1} x\right\}, t \in[2 \delta, 3 \delta), \quad h\left(t, x, x^{\prime}\right)=$ $b_{1} \delta^{-1} x^{\prime}, t \in[3 \delta, 4 \delta)$.

Then a solution of the Cauchy problem

$$
x^{\prime \prime}=g\left(t, x^{\prime}\right)+h\left(t, x, x^{\prime}\right), \quad x(0)=c, x^{\prime}(0)=-p_{+} c
$$

satisfies the condition $x(1)>0$. Therefore the BVP

$$
x^{\prime \prime}=g\left(t, x^{\prime}\right)+h\left(t, x, x^{\prime}\right), \quad p_{+} x(0)+x^{\prime}(0)=0, x(1)=0
$$

has not a solution.
Theorem 2.3 Let y be a solution of the Cauchy problem

$$
y^{\prime \prime}=-a(t) y+b(t) y^{\prime}, \quad y(0)=1, y^{\prime}(0)=-p_{+} .
$$

If $y(t)>0$ for $t \in I$ then the BVP (1), (2) has a solution.

Proof. Choose $\varepsilon>0$ such that for $e_{*} \in L(I,[0,+\infty)),\left\|e_{*}\right\|_{1}<\varepsilon$ a solution of the Cauchy problem

$$
y_{\varepsilon}^{\prime \prime}=-(a(t)+\varepsilon c(t)) y_{\varepsilon}+(b(t)+\varepsilon d(t)) y_{\varepsilon}^{\prime}-e_{*}(t), \quad y_{\varepsilon}(0)=1, y_{\varepsilon}^{\prime}(0)=-p_{+}-\varepsilon
$$

satisfies the inequality $y_{\varepsilon}>\frac{y(1)}{2}$. The constants c and d are the same as appaer il the condition 2. For ε given we find the appropriate $e(t)$ using the condition 2. Consider solutions of the following problems

$$
\begin{gathered}
x_{1}^{\prime \prime}=g\left(t, x_{1}, x_{1}^{\prime}\right)+h\left(t, x_{1}, x_{1}^{\prime}\right), \quad x_{1}(0)=N, x_{1}^{\prime}(0)=-p(N), N \in\left(\frac{q}{\varepsilon},+\infty\right), \\
y_{*}^{\prime \prime}=-(a(t)+\varepsilon c(t)) y_{*}+(b(t)+\varepsilon d(t)) y_{*}^{\prime}-\frac{e(t)}{x_{1}(t)}, \quad y_{*}(0)=1, y_{*}^{\prime}(0)=-p_{+}-\varepsilon .
\end{gathered}
$$

Let us show that $z=x_{1}^{\prime} y_{*}-y_{*}^{\prime} x_{1} \geq 0$. Indeed, $z(0)=x_{1}^{\prime}(0) y_{*}(0)-y_{*}^{\prime}(0) x_{1}(0) \geq-p_{+} N-$ $q+\left(p_{+}+\varepsilon\right) N>0$. Let $t_{1}=\sup \{t \in I:(\forall \tau \in[0, t])(z(\tau) \geq 0)\}$. Notice that if $z \geq 0$ in the interval $\left[0, t_{1}\right]$ then $\frac{x_{1}^{\prime}}{x_{1}} \geq \frac{y_{*}^{\prime}}{y_{*}}$ and $\left(\ln x_{1}\right)^{\prime} \geq\left(\ln y_{*}\right)^{\prime}$. Integration from 0 to t yields $\ln x_{1}(t)-\ln x_{1}(0) \geq \ln y_{*}(t)-\ln y_{*}(0)$. Therefore $\frac{x_{1}(t)}{x_{1}(0)} \geq \frac{y_{*}(t)}{y_{*}(0)}$ or $x_{1}(t) \geq N y_{*}(t)$. If $t_{1}=1$, then $z \geq 0$. Let $t_{1} \in(0,1)$. If $x_{1}\left(t_{1}\right) \geq 0$, then $z\left(t_{1}\right)=x_{1}^{\prime}\left(t_{1}\right) y_{*}\left(t_{1}\right)-y_{*}^{\prime}\left(t_{1}\right) x_{1}\left(t_{1}\right) \geq$ $x_{1}^{\prime}\left(t_{1}\right) y_{*}\left(t_{1}\right)+\left(p_{+}+\varepsilon\right) x\left(t_{1}\right)>0$, and this contradicts the definition of t_{1}. In case of $x_{1}^{\prime}\left(t_{1}\right)<0$ choose $t_{2} \in\left(t_{1}, 1\right)$ such that $x_{1}(t) \leq 0, t \in\left(t_{1}, t_{2}\right)$. Then the relations

$$
\begin{aligned}
x_{1}^{\prime \prime} & =g\left(t, x_{1}, x_{1}^{\prime}\right)+h\left(t, x_{1}, x_{1}^{\prime}\right) \geq h\left(t, x_{1}, x_{1}^{\prime}\right) \\
& \geq-(a(t)+\varepsilon c(t)) x_{1}+(b(t)+\varepsilon d(t)) x_{1}^{\prime}-e(t), \\
y_{*}^{\prime \prime} & =-(a(t)+\varepsilon c(t)) y_{*}+(b(t)+\varepsilon d(t)) y_{*}^{\prime}-\frac{e(t)}{x_{1}(t)}
\end{aligned}
$$

hold in the interval $\left[t_{1}, t_{2}\right]$. A constant N here must be such that $N>\left\|2 \frac{e(t)}{y(1)}\right\|_{1} \varepsilon^{-1}$. Multiplying the inequality above by y_{*}, the equality above by x_{1} and subtracting the latter from the first one obtains that

$$
\begin{aligned}
& x_{1}^{\prime \prime} y_{*}-y_{*}^{\prime \prime} x_{1} \geq(b(t)+\varepsilon d(t))\left(x_{1}^{\prime} y_{*}-y_{*}^{\prime} x_{1}\right)-e(t) y_{*}+e(t) \\
& \geq(b(t)+\varepsilon d(t))\left(x_{1}^{\prime} y_{*}-y_{*}^{\prime} x_{1}\right) .
\end{aligned}
$$

Hence $x_{1}^{\prime \prime} y_{*}-y_{*}^{\prime \prime} x_{1}=\left(x_{1}^{\prime} y_{*}-y_{*}^{\prime} x_{1}\right)^{\prime}=z^{\prime} \geq(b(t)+\varepsilon d(t)) z$ and $z\left(t_{1}\right) \geq 0$. By the comparison theorem $z(t) \geq 0, t \in\left[t_{1}, t_{2}\right]$, which contradicts the definition of t_{1}. Using the same type arguments one yields from $z \geq 0$ that $x_{1} \geq N y_{*}$. If $N y_{*}(1)>N_{0}$, then $x_{1}>N_{0}$. Similarly x_{2} can be found as a solution of the BVP

$$
x_{2}^{\prime \prime}=g\left(t, x_{2}, x_{2}^{\prime}\right)+h\left(t, x_{2}, x_{2}^{\prime}\right), \quad x_{2}(0)=-N, x_{2}^{\prime}(0)=-p(-N)
$$

It is clear that $x_{2}<-N_{0}$. Solvability of the BVP (1), (2) follows from Lemma 2.3.
Theorem 2.6 of the work [1] contains the following conditions for solvability of the BVP

$$
\begin{gather*}
x^{\prime \prime}=f\left(t, x, x^{\prime}\right)+e(t), \quad f=g+h, \\
x(0)=0, \quad x(1)=\alpha x(\eta), \quad \alpha \in R \backslash\left\{\eta^{-1}\right\}, \quad \eta \in(0,1): \tag{8}
\end{gather*}
$$

1. $\left(\exists M_{1}>0\right)\left(|p|>M_{1} \Rightarrow f(t, x, p)+e(t) \neq 0\right)$,
2. $\left(\exists M_{2}>0\right)\left(|p|>M_{2} \Rightarrow p f(0,0, p) \geq 0\right)$,
3. $p g(t, x, p) \leq 0$,
4. $|h(t, x, p)| \leq a(t)|x|+b(t)|p|+u(t)|x|^{r}+v(t)|p|^{k}+c(t), \quad a, b, u, v, c \in L_{1}, 0 \leq r, k \leq 1$,
5. $\left(C_{0}+a_{1}\right) e^{b_{1}}<1, \quad a_{1}=\|a(t)\|_{1}, b_{1}=\|b(t)\|_{1}$,
where

$$
C_{0}=\left\{\begin{aligned}
0, & \alpha \leq 1, \\
\frac{\alpha-1}{\alpha(1-\eta)}, & 1<\alpha<\eta^{-1}, \\
\frac{1}{\alpha \eta}, & \alpha>\eta^{-1} .
\end{aligned}\right.
$$

The following example shows that formulation of theorem 2.6 in [1] needs to be made more precise.

Consider

$$
\begin{gathered}
x^{\prime \prime}=\min \left\{0,-6 l^{3} x^{\prime 3} \max \{0, x\}\right\}-1, \quad l>0, \\
x(0)=0, \quad x(1)=\alpha x(\eta) .
\end{gathered}
$$

Suppose that η is fixed. Then for any $\varepsilon>0$ there exists l such that the problem (8) has a solution only for $\alpha \in\left(\eta^{-1}, \eta^{-2}+\varepsilon\right)$.

3 Existence of a positive solution

Consider the boundary value problem

$$
\begin{equation*}
x^{\prime \prime}+g(t) f\left(x, x^{\prime}\right)=0, \quad x^{\prime}(0)=0, x(1)=\alpha x(\eta) \tag{9}
\end{equation*}
$$

where $g \in L_{1}(I,[0,+\infty)), \quad f \in C([0,+\infty) \times(-\infty, 0],[0,+\infty))$ and $\alpha, \eta \in(0,1)$.

Theorem 3.1 Suppose the conditions

1. $\int_{0}^{1} g(t) d t=1$,
2. $\left(\forall x_{1}, x_{2} \in[0,+\infty)\right)\left(\forall x_{1}^{\prime}, x_{2}^{\prime} \in(-\infty, 0]\right)\left(x_{1} \leq x_{2} \wedge x_{1}^{\prime} \leq x_{2}^{\prime} \Rightarrow f\left(x_{1}, x_{1}^{\prime}\right) \leq f\left(x_{2}, x_{2}^{\prime}\right)\right)$,
3. $f(0,0)>0$,
4. $(\exists H>0)(\forall x \geq H)(f(x, 0) \leq D x), D \in\left(0, \frac{1-\alpha}{1-\alpha \eta}\right]$
are fulfilled.
Then the BVP (9) has a positive solution.
Proof. Define $f\left(x, x^{\prime}\right)$ for $x<0$ by the formula $f\left(x, x^{\prime}\right)=f\left(0, x^{\prime}\right)$. Consider solutions x_{N} of the Cauchy problems

$$
x^{\prime \prime}+g(t) f\left(x, x^{\prime}\right)=0, \quad x(0)=N, x^{\prime}(0)=0
$$

for $N>0$. If N is sufficiently small then the graph of a solution x_{N} crosses the t-axis. Consider behavior of x_{N} for N great. The estimates $x_{N}^{\prime} \geq-N D$ and $x_{N}(t) \geq N-N D t$, $t \in I$ can be obtained repeating the arguments of the proof of Lemma 2.2. Therefore $x_{N}(t)>0$ for N sufficiently large. Then a solution x_{N} exists such that $x_{N}(1)=0$. If
uniqueness of solutions of initial value problems is presupposed then a solution of the BVP (9) exists for $\alpha \in\left(0, \frac{1-D}{1-D \eta}\right]$. Indeed, the ratio $\frac{x_{N}(1)}{x_{N}(\eta)}$ satisfies the inequality

$$
\begin{aligned}
\frac{x_{N}(1)}{x_{N}(\eta)} & \geq x_{N}(\eta)-N D \frac{1-\eta}{x_{N}(\eta)}=1-N D \frac{1-\eta}{x_{N}(\eta)} \\
& \geq 1-N D \frac{1-\eta}{N(1-D \eta)}=\frac{1-D}{1-D \eta}
\end{aligned}
$$

under the condition that $x_{N}^{\prime} \geq-N D$. By using the approximation procedure of $f\left(x, x^{\prime}\right)$ by the functions $f_{n}\left(x, x^{\prime}\right)$, which satisfy the Lipschitz condition and the conditions 2 to 4 of the theorem, one can obtain a sequence of positive solutions x_{n} of boundary value problems

$$
x^{\prime \prime}+g(t) f_{n}\left(x, x^{\prime}\right)=0, \quad x^{\prime}(0)=0, x(1)=\alpha x(\eta)
$$

which converges to a positive solution of the BVP (9).
Remark 1. The condition $f(0,0)>0$ is equivalent to the condition

$$
\left(\exists H_{1}>0\right)\left(|x|+\left|x^{\prime}\right| \leq H_{1} \Rightarrow\left|f\left(x, x^{\prime}\right)\right| \geq C\left(|x|+\left|x^{\prime}\right|\right), \quad C>0\right.
$$

of the theorem 3.2 of the work [1]. Indeed,

$$
0<C H_{1} \leq\left|f\left(0,-H_{1}\right)\right|=f\left(0,-H_{1}\right) \leq f(0,0)
$$

The opposite implication follows from the continuity of f.
The condition $(\exists H>0)(\forall x \geq H)(f(x, 0) \leq D x)$ is equivalent to the condition

$$
\left(\exists H_{2}>0\right)\left(|x|+\left|x^{\prime}\right| \geq H_{2} \Rightarrow\left|f\left(x, x^{\prime}\right)\right| \leq D\left(|x|+\left|x^{\prime}\right|\right), \quad b>0\right.
$$

of the theorem 3.2 of the work [1]. Indeed,

$$
\left|f\left(x, x^{\prime}\right)\right|=f\left(x, x^{\prime}\right) \leq f(x, 0) \leq b x \leq D\left(|x|+\left|x^{\prime}\right|\right)
$$

The opposite implication is evident.
Example. Consider

$$
\begin{equation*}
x^{\prime \prime}=g_{\delta}(t) \max \{1-D, D x\}, \quad x(0)=0, x(1)=\alpha x(\eta), \tag{10}
\end{equation*}
$$

where $\delta \in(0,1), g_{\delta}(t)=\delta^{-1}$ for $t \in[0, \delta), g(t)=0$ for $t \in[\delta, 1], D, \eta \in(0,1)$. Let us show that for any $\varepsilon>0$ there exists δ such that the problem (10) has not a solution for $\alpha=\frac{1-D}{1-D \eta}+\varepsilon$. Indeed, for sufficiently small δ a solution of the Cauchy problem

$$
x^{\prime \prime}=g_{\delta}(t) \max \{1-D, D x\}, \quad x(0)=1, x^{\prime}(0)=0
$$

is close to $1-D t$.
Remark 2. If g is fixed then the estimates for D and α can be improved. Let λ_{1} be the first eigenvalue of the BVP

$$
x^{\prime \prime}+\lambda g(t) x=0, \quad x^{\prime}(0)=0, x(1)=0,
$$

$D \in\left(0, \lambda_{1}\right)$ and y be a solution of the Cauchy problem

$$
y^{\prime \prime}+g(t) D y=0, \quad y(0)=1, \quad y^{\prime}(0)=0 .
$$

Then there exists a positive solution of the BVP (9) for $\alpha \in\left(0, \frac{y(1)}{y(\eta)}\right)$. Indeed, let x stand for a solution of the BVP

$$
x^{\prime \prime}+g(t) f\left(x, x^{\prime}\right)=0, \quad x(1) \geq H, x^{\prime}(0)=0 .
$$

Then

$$
x^{\prime \prime}+g(t) D x \geq 0, \quad y^{\prime \prime}+g(t) D y=0 .
$$

One gets multiplying the first inequality by y, ten the second equality by x and subtracting the second from the first that $x^{\prime \prime} y-y^{\prime \prime} x=\left(x^{\prime} y-y^{\prime} x\right)^{\prime} \geq 0$. Integration from 0 to t yields $x^{\prime}(t) y(t)-y^{\prime}(t) x(t) \geq 0$ or $\frac{x^{\prime}}{x} \geq \frac{y^{\prime}}{y}$. Hence $(\ln x)^{\prime} \geq(\ln y)^{\prime}$. Integrating this inequality from η to 1 one obtains $\ln x(1)-\ln x(\eta) \geq \ln y(1)-\ln y(\eta)$. Therefore $\frac{x(1)}{x(\eta)} \geq \frac{y(1)}{y(\eta)}$, which proves the assertion.

References

[1] W. Feng, Solutions and positive solutions for some three-point boundary value problems. Dynamical systems and differential equations, AIMS, 2003, 263-272.
[2] W. Feng, J.R.L. Webb, Solvability of m-point boundary value problems with nonlinear growth. J. Math. Anal. Appl., 212 (1997), 467-480.
[3] W. Feng, J.R.L. Webb, Solvability of three-point boundary value problems at resonance. Nonlinear Anal. TMA 30 (1997), 3227-3238.
[4] C.R. Gupta, Solvability of a three-point boundary value problem for a second order ordinary differential equation. J. Math. Anal. Appl., 168 (1992), 540-551.
[5] C.R. Gupta, A note on a second order three-point boundary value problem. J. Math. Anal. Appl., 186 (1994), 277-281.
[6] C.R. Gupta, A second order m-point boundary value problem at resonance. Nonlinear Anal. TMA 24 (1995), 1483-1489.
[7] C.R. Gupta, S.K. Ntouyas, P.Ch. Tsamatos, On an m-point boundary-value for second-order differential equations. Nonlinear Anal. TMA 23 (1994), 1427-1436.
[8] C.R. Gupta, S.K. Ntouyas, P.Ch. Tsamatos, Solvability of m-point boundary value problem for second order ordinary differential equations. J. Math. Anal. Appl., 189 (1995), 575-584.
[9] R. Ma, Existence theorems for a second order three-point boundary value problem. J. Math. Anal. Appl., 212 (1997), 430-442.
[10] J.R.L. Webb, Positive solutions of some three point boundary value problems via fixed point theory. Nonlinear Anal., 46 (2001), 4319-4332.

А. Лепин. О трехточечной краевой задаче.

Аннотация. Указаны условия существования решения краевой задачи $x^{\prime \prime}=g\left(t, x, x^{\prime}\right)+$ $h\left(t, x, x^{\prime}\right), p x(0)+x^{\prime}(0)=0, \quad H x=0$.

УДК 517.927

A. Lepins. Par vienu trispunktu robez̆problēmu.

Anotācija. Tiek doti robez̆problēmas $x^{\prime \prime}=g\left(t, x, x^{\prime}\right)+h\left(t, x, x^{\prime}\right), p x(0)+x^{\prime}(0)=0$, $H x=0$ atrisinājuma eksistences nosacījumi.

Institute of Mathematics
and Computer Science,
University of Latvia
Riga, Rainis blvd 29

