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On three-point boundary value problems
A.Ja. Lepin

Summary. We provide the conditions for solvability of the boundary value problem
2" =g(t,x, ')+ h(t,z,2"), px(0)+2'(0) =0, Hz =0.
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1 Introduction

In the work [I] the existence of a solution to the boundary value problem

2 =g(t,x,2') + h(t,z,2"), tel:=]|0,1],
0,

px(0)+2'(0) =0, z(1)=az(n), a<0,0<n<l1

was proved under the assumptions that

|h(t,z,2")| < a(t)|z| + b(t)|x'| + u(t)|z|]" + v(t)|x'|k +e(t), 0<nrk<l,
(Ipl +a)e™ <1, ay = la(®)]l, b= [b(t)]]x.

Moreover, the existence of a positive solution to the boundary value problem
2 +gt)f(x,2") =0, 2(0)=0, z(1) =azx(n), «a,ne(0,1),

where g € C(1,]0,4+00)), f € C(]0,400) x (—00,0],[0,400)), was obtained. Three- and
multipoint boundary value problems were considered in the works [2] - [10].

Our purpose in this paper is twofold. First, we show that the conditions (py +a;)e? <
1, where p, = max{0,p}, or (py + a1)e® =1 and a; + b; > 0 imply the existence of
a solution to the problem (1). It is possible to construct counterexample which shows
that for a; = by = 0 and p = 1 the problem has not a solution. Counterexample can
be constructed also which shows that the problem has not a solution if the condition
(py + ap)e® > 1 holds.

Second, we provide conditions for existence of a positive solution. These conditions
differs slightly from the conditions of Theorem 3.2 in [1] and cannot be improved. This
is confirmed by construction the respective examples.
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2 Setting of a problem

Consider the problem
=gtz ")+ h(t,z,2"), tel, (1)

p(z(0)) +2'(0) =0, Hx =0, (2)

where functions ¢ and h satisfy the Caratheodory conditions, p € C(R,R) and H €
C(CYI,R),R).

We assume that the following conditions hold:
(1) 2/ g(t,z,2') <0, (t,z,2') €l x R
(2) There exist functions a,b,c,d € Li(I,[0,400)) such that for any € > 0 there exists
e € Ly(I,]0,400)) such that

[A(t, z, )] < (a(t) + ec(t)) [x] + (b(t) + ed(t))]2'| + e(t),

holds for any (t,z,2') € I x R
(8) There exist pi,q € [0, +00) such that

p(N)>pN—q, N<O0,p(N)<pN+gq, N=>0.
(4) There exist Ny > 0 such that for any = € C'(I, R)
(Vt € I)(x(t) > No) = Hx >0, (Vt € I)(x(t) < —Ng) = Hx < 0.
Lemma 2.1 Let a,b,e € Li(1,[0,400)), zo,x1 € R. Suppose that the estimate
\h(t,z,2')| < a(t)|z| +b(t)|2| +e(t), (t,z,2')elx R?
holds. Then a solution x of the Cauchy problem
" =g(t,z,2") + h(t,z,2"), x(0) =z, 2'(0) =24

extends to the interval I and satisfies the estimates —y < x <y, where y is a solution to
the Cauchy problem

y' =a(t)y+ b)Yy +e(t), y(0) = |zol, y'(0) = |zl

Proof. Let us show that boundedness of a solution z(¢) in I implies boundedness of
a derivative 2/(t). Suppose the contrary is true. Consider the case

z:[0,7) — R, 7 € (0,1], sup{|z(t)| : t €[0,7)} < +o0, limx'(t) = +00.

Let t; € (0,7) be such that

T 1
a:’(t)>0,t€(t1,7),/ blt)dt < 3.
t1

The inequality

I//(t)

a(t)|z(t)] + b(t)|2'(t)| + e(t), te€ (t1,7)

g(t, x(t), ' (1)) + h(t, 2(1), '(t)) < h(t, x(t), ' (1))

IA I
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implies that

Pt =0 < [ (a0l +eo)ar+ T2

t1

for to € (t1,7) such that 2'(ty) = max{a2/(t) : t € [t1,ts]}. This inequality is impossible
for sufficiently large x'(t3). The case of lim;_., 2'(t) = —oo can be considered in a similar
way.

Choose € > 0 and let y. be a solution of the Cauchy problem

y' =a(t)y+o(t)y +e(t), y(0)=lzol, ¥'(0) = || + &

We wish to show that the inequalities —y. < x < y. hold for any € > 0. Then the estimates
—y < x < y are evident. Consider the case of existing 7 € (0,1) such that y.(7) = 2/(7)
and

—y(t) <2'(t) <yi(t), te(0,7) (3)
Choose t; € (0,7) such that 2/(t) > 0, t € (t1,7). Then
2"(t) = g(t, x(t), 2" (1)) + h(t, x(t), 2'()) < h(t, 2(t),2'(t))
< a(t)]x(t)] +0(t)2'(t) + e(t) < a(t)ye(t) +b(t)yL(t) +e(t) = y/(t), t € (tr,7).

Therefore either a'(7) — 2'(t1) < yL(7) — y.(t1) or y.(t1) < 2/(t1), which contradicts the
inequalities (3).
The case of —y.(7) = 2/(7) can be considered in a similar way. [

Lemma 2.2 Let a,b,e € Li(1,[0,400)), N > 0 and the estimate
[h(t, @, 2")| < a(t)|o] +b(t)]2"] +e(t), (t,2,2") € I x R?

hold. If (py + a1 + <) e < 1, where e; = |le(t)|1, then a solution x of the Cauchy
problem
" =g(t,x,2") + h(t,x,2"), xz(0)=-—N, 2'(0) = —p(—N)

satisfies the estimate
x(t) < =N +t(Npy + Nay +e, +q)e™, tel. (4)
Proof. Consider the case of 2/(t) > 0, t € I. Then

2"(t) = g(t, x(t), 2'(1)) + h(t, x(t), 2'(t)) < h(t, z(1),2'(1))
< —a(t)|x(t)| + b(t)2'(t) + e(t) < b(t)2'(t) + a(t)N +e(t), tel.

A solution y(t) of the Cauchy problem

Yy () =b(t)y(t) +a(t)N +e(t), y(0) =pN+q (5)

by comparison theorem satisfies the inequality z/(t) < y(t), t € I. The explicit formula
for a solution of the problem (5)) is

y(t) = (4N + q) exp / b(s)ds + / (a($)N + e(s)) exp / bE)de)ds.  (6)
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It follows from (6) that
y(t) < (Npy +q+ Nay +e)e”, tel (7)

The estimate (4) follows.

Consider the case of z(t) > —N, t € I. Let T = {t € (0,1) : 2'(t) > 0}. It is clear
that 7" is an open set, which is a sum of disjoint open intervals. Let (t1,%2) be such an
interval. If £; = 0, then the proof is similar to the previous one. If ¢; > 0, the z'(t;) =0
and the estimate in [t1, 3] can be obtained like previously. Hence the estimate (7)) follows.

Consider the case of min{x(t) : ¢t € I} < —N. Let z(t;) = —N; < —N. Then the
estimate

Q?(t) < —N1 + (t — tl)(Nlal + 61)€b1 < —N + (t — tl)(Nlal + €1>€b1, t e [tl,tg].
The estimate (4) follows. O

Lemma 2.3 Suppose there exist two solutions x1 and xo of equation (1) such that
p(x1(0)) + #1(0) = p(x2(0)) + 25(0) =0, HzHzy <0.
Then there exist a solution of the problem (1), (2).

Proof. Let z;(0) < 25(0) and denote by S a set of solutions of equation (1) which
satisfy the conditions

p(x(0)) +2'(0) =0, 21(0) < z(0) < x4(0).

Since S is a connected set and 1, x5 € S there exists x € S such that Hx = 0. [J

Theorem 2.1 Suppose that (p, +a;)e? < 1. Then there exists a solution to the problem
(1), (2).
Proof. Let € > 0 be such that the inequality
(p+ +a; + €Cl)ebl+€dl <1

holds, where ¢; = ||c(t)]|1 and dy = ||d(t)||;. Let e(t) be a function from the condition 2.
Choose N > 0 such that the inequalities

e+
(p+ + a1 +ecr + 1Tq)eb1+€d1 <1,

N — (N(py +q +ec) + e +q)e ™ > N
hold, where e; = ||e(t)||;. The estimate
21(t) < =N +t(N(py + a1 +ec1) + ey +q)e 4 < —N,, tel
follows from Lemma 2.2 for a solution x; of the Cauchy problem
" =g(t,z,2") + h(t,z,2"), x(0)=—N, 2/(0) = —p(—N).

Similarly the estimate x5(t) > Ny, t € I can be obtained for a solution x5 of the Cauchy
problem
" =g(t,z,2") + h(t,z,2"), x(0) =N, 2/(0) = —p(N).

Then solvability of the problem (1)), (2) follows from Lemma 2.3, O
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Theorem 2.2 Suppose that (p, +a,)e? =1 and a; +b; > 0. Then there exists a solution
to the problem (1), (2).

Proof. Consider the case of a; > 0. Pick 7 € (0,1) such that [ a(t)dt = %. It
follows from the condition 2 and Lemma 2.2/ that

x(t) < =N +t(N(py + % +ecy) +er + q)ebl, t €0, 7],

2(t) < —N+7(N(ps + 5 +ecr) +er +q)e”
+(t —7)(N(py + a1 +ec1) + e+ q)e™
—N +t(N(py + a +ec1) + e+ q)eb1 — TNal%, ter1].

Choose € > 0 and N > 0 such that the inequalities

gcy — T% <0, (N(ec;— T%) + e+ q)e” < —N.

Solutions z; and x5 can be constructed as in the proof of Theorem 2.1. Solvability of the
boundary value problem (1)), (2)) follows from Lemma 2.3l The cases of a; = 0 and b; > 0
can be considered as above. [J

Examples. The examples below show that the estimates of theorems 2.1 and 2.2 are
best possible.
Let a; = by = 0 and p(N) = N. Then a solution of the Cauchy problem

has the form x(t) = t* — ¢t + ¢ and z(1) = 1. Therefore the BVP
=2 z(0)+2(0)=0, z(1)=0

has not solutions.

Let (py + a1)e” > 1, 6 € (0,7) and g(t,2') = max{0,—26"'2"}, ¢ € [0,9),
g(t, ')y =0, t €[5,1], h(t,x,2") =0, t € [0,0) U [40, 1],
h(t,z,2') =671, t€0,20), h(t,z,2") = max{0, —a,0 'z}, t € [26,35), h(t,z,2") =
bid~ !, t € [30,49).

Then a solution of the Cauchy problem

" =g(t, ')+ h(t,x,2"), x(0)=c, 2'(0) = —pic
satisfies the condition z(1) > 0. Therefore the BVP
2 =g(t,x")+ h(t,z,2"), p,x(0)+2(0)=0, (1) =0

has not a solution.

Theorem 2.3 Let y be a solution of the Cauchy problem

y' = —a(t)y +0(t)y’, y(0)=1, y(0) = —p4.

If y(t) > 0 fort € I then the BVP (1), (2) has a solution.
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Proof. Choose € > 0 such that for e, € L(I,[0,4+00)), |le|l1 < € a solution of the
Cauchy problem

vl = —(a(t) +ec(t))ye + (b(t) +ed(t)yl — ex(t), we(0) =1, y(0) = —py — ¢

satisfies the inequality y. > @ The constants ¢ and d are the same as appaer il the
condition 2. For ¢ given we find the appropriate e(t) using the condition 2. Consider

solutions of the following problems

Z‘/I/ = g(t,xl,xll) + h(t7x17x/1)7 5131(0) = N7 xll(o) - _p(N)7 N e (g,—i—OO),

y.(0) =1, y,(0) = —py —&.

0)y+(0) — 42(0)z1(0) > —p4y N —
(1) > )} Notice that if z > 0

Yo = —(a(t) + ec(t))y. + (b(t) + ed(t))y.

Let us show that z = 2}y, — y.x1 > 0. Indeed, 2z(0
g+ (pyr +e)N > 0. Let ty =sup{t € [ : (V1 €
in the interval [0,¢;] then % > z—/ and (Inz;) > (Iny,
Inz(t) —Inzy(0) > Iny.(t) — Iny.(0). Therefore 1( )) > (()) or x1(t) > Nuy.(t). If t; =1,
then z > 0. Let ¢; € (0,1). If z1(t1) > 0, then z(t1) = @) (t1)y«(t1) — V. (t1)z1(t1) >
2y (t1)y«(t1) + (p+ + €)x(t1) > 0, and this contradicts the definition of t;. In case of
2 (t1) < 0 choose ty € (t1,1) such that z1(t) <0, ¢ € (t1,t2). Then the relations

t)’

1(
) =
[0,1]
(In
(t

i (
)(2
)

Integration from 0 to t yields

oy =gtz 2)) + h(t,xy,2)) > h(t, z1, 2))
> —(a(t) + ec(t))zr + (b(t) + ed(t))x) — e(t),

e(t)
z1(t)

yi = —(a(t) +ec(t))y. + (b(t) + ed(t))y; —

-1

hold in the interval [t,ts]. ;((?)Hls
Multiplying the inequality above by ., the equality above by x; and subtracting the
latter from the first one obtains that

21y — ylwr > (b(1) + ed(t)) (219s — yiar) — e(t)y. + e(t)
> (b(t) + ed(t)) (21 Y — yiwr),

Hence z(y. —ylz1 = (2y. —vyix1) = 2" > (b(t)+ed(t))z and z(¢t;) > 0. By the comparison
theorem z(t) > 0, t € [t1,t5], which contradicts the definition of ¢;. Using the same type
arguments one yields from z > 0 that x; > Ny,. If Ny.(1) > Ny, then z; > Nj. Similarly
9 can be found as a solution of the BVP

[)3,2/ = g(t7 L2, C("/2) + h(ta L2, I/2)’ IQ(O) =—N, x,Z(O) = —p(—N).
It is clear that o < —Nj. Solvability of the BVP (1), (2) follows from Lemma 2.3. O

Theorem 2.6 of the work [1] contains the following conditions for solvability of the
BVP
= f(t,x,x')+e(t), f=g+h, (8)
2(0) =0, z(1)=oaz(n), acR\{n'}, ne(01):
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. (3M; > 0)(|p| > My = f(t,z,p) + e(t) #0),

. (3My > 0)(|p| > Mz = pf(0,0,p) > 0),

. py(t,x,p) <0,

Rt 2, p)| < a(t)|z|+b(t)|p| +ut)|x]” + o) |p|*F+c(t), a,bu,v,c€ Ly, 0<r k<1,
(Cota)e™ <1, ar = fla(t)]s, by = [1b(®)]]1,

where

U W N~

0, a<l,
a—1
— l<a<np™?
Co=1< afl —17))’ “=m
—, a> 77_1.
an
The following example shows that formulation of theorem 2.6 in [1] needs to be made
more precise.
Consider
" = min{0, —6/°2" max{0,z}} — 1, >0,
2(0) =0, (1) = az().

Suppose that 7 is fixed. Then for any € > 0 there exists [ such that the problem (8) has
a solution only for a € (n7%, 072 + ¢).

3 Existence of a positive solution

Consider the boundary value problem
2"+ g(t)f(z,2') =0, 2'(0) =0, z(1) = az(n), (9)

where g € Li(I,]0,+0)), f € C([0,400) x (—00,0],[0,+00)) and a,n € (0,1).

Theorem 3.1 Suppose the conditions

1 [ g(t)dt =1,

2. (Vxy, 29 € [0, +00))(Va!, 2 € (—00,0]) (21 < zo A2 < b = fag, 7)) < f(xg,2h)),
3. £(0,0) > 0,

4. (3H > 0)(Vz > H)(f(x,0) < Dz), D € (0, 11:—&‘:7]

are fulfilled.

Then the BVP (9) has a positive solution.

Proof. Define f(z, ") for < 0 by the formula f(z,2") = f(0,2). Consider solutions
xn of the Cauchy problems

" +g(t)f(z,2') =0, z(0)=N, 2(0) =0

for N > 0. If N is sufficiently small then the graph of a solution zy crosses the t-axis.
Consider behavior of zy for N great. The estimates 2%y > —ND and xn(t) > N — NDt,
t € I can be obtained repeating the arguments of the proof of Lemma 2.2. Therefore
zn(t) > 0 for N sufficiently large. Then a solution zx exists such that xzy(1) = 0. If
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uniqueness of solutions of initial value problems is presupposed then a solution of the

BVP (9) exists for a € (0, %]. Indeed, the ratio ig—&% satisfies the inequality

wn(1) 1— 1
> —ND—=L =1-ND-—1
an(n) = zx (1) N () N ()
l=n  1-D

>1—-ND

N(1—Dn) 1-Dn

under the condition that z/y > —ND. By using the approximation procedure of f(z,x’)
by the functions f,(x,z’), which satisfy the Lipschitz condition and the conditions 2 to
4 of the theorem, one can obtain a sequence of positive solutions x,, of boundary value
problems

o+ g(t) falz,2’) =0, 2'(0) =0, z(1) = ax(n),

which converges to a positive solution of the BVP (9).

Remark 1. The condition f(0,0) > 0 is equivalent to the condition
(BHy > 0)(|z] + |2 < Hy = |f(x,2)] = C(lx| +1]), € >0
of the theorem 3.2 of the work [1]. Indeed,
0 < CHy <[f(0,-H1)| = f(0, —Hy) < f(0,0).

The opposite implication follows from the continuity of f.
The condition (IH > 0)(Vz > H)(f(z,0) < Dz) is equivalent to the condition

(3Hy > 0)(|z| + |2'| > Hy = | f(z,2")] < D(|z| +|2']), b>0
of the theorem 3.2 of the work [1]. Indeed,
|f (2, 2)| = f(z,2) < f(x,0) < bx < D(|| + |2']).

The opposite implication is evident.
Example. Consider

" = gs(t)max{l — D, Dz}, x(0)=0, (1) = az(n), (10)

where 6 € (0,1), gs(t) =01 for t € [0,d), g(t) =0 for t € [6,1], D,n € (0,1). Let us
show that for any € > 0 there exists § such that the problem (10) has not a solution for

o= 11:[1)377 + ¢. Indeed, for sufficiently small § a solution of the Cauchy problem

" = gs(t)max{l — D, Dz}, z(0)=1, 2'(0)=0

is close to 1 — Dt.

Remark 2. If g is fixed then the estimates for D and « can be improved. Let A; be
the first eigenvalue of the BVP

"+ Xg(t)r =0, 2/(0)=0, z(1) =0,
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D € (0,\) and y be a solution of the Cauchy problem
y'+g(t)Dy =0, y(0)=1, y'(0)=0.

Then there exists a positive solution of the BVP (9) for a € (0, %) Indeed, let = stand
for a solution of the BVP

=

" +g(t)f(z,2') =0, z(1) > H, 2(0) =0.

Then
2" +g(t)Dx >0, " +g(t)Dy=0.

One gets multiplying the first inequality by ¥, ten the second equality by x and subtracting
the second from the first that "y — y"x = (2'y — /)’ > 0. Integration from 0 to ¢ yields
2 (t)y(t)—y'(t)x(t) > 0 or % > % Hence (Inz)" > (Iny)". Integrating this inequality from
n to 1 one obtains Inz(1) —Inx(n) > Iny(1) — Iny(n). Therefore % > %, which proves

X
the assertion.
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A. Jlenun. O TpexTouyedyHOIi KpaeBoii 3aj1a4e.

AnHOTanms. YKa3aHbl yCJIOBUS CYIECTBOBAHUS PellleHus KpaeBoii 3anaun x” = g(t, x, z')+
h(t,z,z"), px(0)+2'(0) =0, Hx = 0.

YK 517.927

A. Lepins. Par vienu trispunktu robezproblemu.
Anotacija. Tiek doti robezproblemas =" = g(t, z,2') + h(t, z,2"), px(0)+ 2'(0) =0,
Hax = 0 atrisinajuma eksistences nosacijumi.
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