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Non-Monotone Iterations

M.Dobkevicha

Summary. A two-point boundary value problem x′′ = f(t, x),
x(a) = A, x(b) = B for which the so called upper and lower functions exist, is con-
sidered. For the specific case a non-monotonic iterative approximation scheme has been
built for one of the solutions, namely, for which the differential equation of variations
oscillates.

1 Introduction

We consider a non-linear second-order differential equation

x′′ = f(t, x) (1)

with boundary conditions
x(a) = A, x(b) = B. (2)

Geometric interpretation of this problem (1)–(2) is as follows: it is necessary to find
the integral curve passing through two points with coordinates (a,A) and (b, B).

Assume there exist upper α and lower β functions for the problem (1)–(2). Functions α

and β, according to the definition, are such functions that satisfy the following conditions:

α ≤ β, α′′ ≥ f(t, α), β ′′ ≤ f(t, β), ∀t ∈ [a, b]
α(a) ≤ A ≤ β(a), α(b) ≤ B ≤ β(b).

(3)

Then the problem (1)–(2) has a solution x(t), such that ([3],[2])

α(t) ≤ x(t) ≤ β(t), ∀t ∈ [a, b]

We suppose that

α < β, α(a) < A < β(a), α(b) < B < β(b) t ∈ [a, b].

For the solution of the problem (1)–(2) there exist schemes of constructing the mono-
tone iterations, which are considered by C. De Coster and P.Habets in their works [4],
[1].
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The objective of this work is to use the scheme of non-monotone iterations for non-
linear second-order boundary value problem considering the particular example. In Sec-
tion 2 the scheme of monotone iterations is considered. In Section 3 characteristics of
solutions of the analyzed problems are given, as well as the L. Jackson and K. Schrader’s
theorem is considered. In Section 4 and 5 we use the scheme of non-monotone iterations
for solution of the problem (1)–(2). An example of application is shown.

2 Monotone iterative methods

Consider a boundary value problem (1)–(2). Let functions α and β satisfy the condi-
tions (3).

Theorem 2.1 There exist solutions x∗ and x∗, where x∗ ≥ x∗, such that sequences {xn}
and {xn} of solutions of equation (1) can be constructed which converge monotonically.

Proof. Construct two infinite sequences, which are denoted as {xn} and {xn}. Start with
constructing the sequence {xn}, which converges to the solution of the problem (1)-(2)
mentioned above.

Determine the points A1 and B1 in the following way: A1 = β(a);
B1 = β(b). Then, for the equation (1), the following boundary values are obtained:
x(a) = A1 and x(b) = B1. Such a problem can be solved with the help of the theorem
of lower and upper solutions [2, Theorem 7.19]. Denote the obtained solution as x1. Now
it is possible to rename the upper function, i.e. β(t) = x1, because x1 also satisfies the
conditions (3).

Then, for the equation (1) the following boundary values are determined: x(a) = A2

and x(b) = B2. Denote the solution of this boundary problem as x2 and so on. The graph
of the function x2(t) lies between graphs of α(t) and x1(t). The following inequalities are
valid for the function x2(t)

α ≤ x2(t) ≤ x1(t) ≤ β, ∀t ∈ [a, b].

Now take the function x2(t) as the upper function and consider the next approximation.
We obtain an infinite sequence of functions {xn} continuing this process.

The following dependence is valid for all members of the sequence {xn} according to
the elaborating algorithm:

x1 ≥ x2 ≥ x3 · · · ≥ xn ≥ · · ·

Consider now the selection of points Ai and Bi (i = 2, 3, 4, . . . , n, . . . ) for boundary
conditions x(a) = Ai, x(b) = Bi.

Let write in general:

Ai = A +
1

i
(β(a) − A),

Bi = B +
1

i
(β(b) − B),

where i = 2, 3, · · · .
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The choice of points Ai and Bi done in this way ensures that the following conditions

α(a) < Ai < β(a),
α(b) < Bi < β(b)

are satisfied. Also the conditions of the theorem of lower and upper solutions [2, Theorem
7.19] are fulfilled.

Thus, the infinite sequence of solutions of the equation (1) with different boundary
values is constructed. Moreover all points Ai and Bi converge to points A and B, which
are defined in the condition (2).

Graphs of all solutions xi (i = 1, 2, 3 · · · ) lie between graphs of functions α(t) and
β(t). Denote this region as ω(α, β).

Let us prove that a subsequence can be chosen from the infinite sequence of solutions,
which converges to x∗.

In the right side of the equation (1) the function f(t, x) can be also unbounded within
the interval [a, b]. That is why we define the function F (t, x) in the following way:

F (t, x) = f(t, δ(α, x, β)) + δ(0, x − β, 1) − δ(0, α − x, 1), (4)

where the function

δ(x, y, z) =







z, y ≥ z,

y, x < y < z,

x, y ≤ x.

(5)

The function F (t, x) according to the above-mentioned definition is bounded, it means
that |F (t, x)| < M, where (t, x(t)) ∈ ω(α, β) and n ∈ N.

Moreover, within the interval [a, b], it coincides with the initial function f(t, x). Ac-
cording to Arzela-Ascoli criterium [2], any infinite compact sequence contains a convergent
subsequence. In order to do it, compactness of the infinite number of functions {xn} within
the space C1 is to be shown, however it means that {xn} and {x′

n} are equicontinuous
and equipotentionally continued ones. Thus, show compactness of the sequence {xn(t)}
of the solution of the problem (1)-(2). First of all, show that the infinite sequence {xn(t)}
is bounded. All the solutions of the problem (1), are in ω(α, β). That is why,

|xn(t)| < max{|β(t)|, |α(t)|}

Introduce a constant K = max{|β(t)|, |α(t)|}.
We get that ∀t ∈ [a, b], n ∈ N |xn(t)| < K is bounded.

Now show that the infinite sequence {x′
n(t)} is uniformly bounded. Show that there

exist t0 such that the following inequality is true:

|x′
n(t0)| <

2K

b − a
. (6)

Let us prove it. Assume the opposite, i.e. ∀t ∈ [a, b]. As a result the following inequality
is true:

x′
n(t) ≥ 2K

b − a
or x′

n(t) ≥ − 2K

b − a
. (7)
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Integrate both parts of the inequalities (7):

∫ t

a
x′

n(s) ds ≥ 2K
b−a

∫ t

a
ds, or

∫ t

a
x′

n(s) ds ≤ − 2K
b−a

∫ t

a
ds.

(8)

As a result, get:
xn(t) − xn(a) ≥ 2K

b−a
(t − a), or

xn(t) − xn(a) ≤ − 2K
b−a

(t − a).
(9)

In equalities (9) at t = b, get:

xn(b) − xn(a) ≥ 2K or

xn(b) − xn(a) ≤ −2K.

(10)

The last two inequalities contradict to the choice of the number K, what denotes that
there exists t0 ∈ [a, b], for which the inequality (6) is valid.

Thus, it is shown that the infinite sequence {x′
n(t)} is uniformly bounded. Before to

evaluate {x′
n(t)} in modulus, write

x′
n(t) = x′

n(t0) +

∫ t

t0

x′′
n(s) ds, (11)

where a < t0 < b. Then,

|x′
n(t)| =

∣

∣

∣
x′

n(t0) +
∫ t

t0
x′′

n(s) ds

∣

∣

∣

< 2K
b−a

+
∣

∣

∣

∫ t

t0
F (s, xn(s) ds

∣

∣

∣

< 2K
b−a

+ M(b − a).

(12)

It can be shown now that the sequence is equicontinuous. First of all, show this feature
for the infinite number of functions {xn(t)}.

According to the definition of that equicontinuty ∀ε > 0 ∃δ > 0, such that as soon
as |t2 − t1| < δ ⇒ |xn(t1) − xn(t2)| < ε.

One has, according to Lagrange’s Mean Value Theorem, that

xn(t1) − xn(t2)

t1 − t2
= x′

n(θ), (13)

where t1 < θ < t2 ∀t1, t2 ∈ [a, b]. We can evaluate the modulus of the difference, using
(12).

|xn(t1) − xn(t2)| = x′
n(θ)|t1 − t2| <

(

2K

b − a
+ M(b − a)

)

|t1 − t2|. (14)
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As a result, get the value δ > 0:

δ =
ε

2K
b−a

+ M(b − a)
. (15)

Now evaluate the modulus of the difference |x′
n(t1)−x′

n(t2)| and find the corresponding
δ. Using Lagrange’s Mean Value Theorem, it is possible to state:

|x′
n(t1) − x′

n(t2)| = |x′′
n(θ)||t1 − t2| (16)

where t1 < θ < t2 ∀t1, t2 ∈ [a, b].

Using the condition of the problem (1), in last expression change x′′
n(θ) to F (θ, xn(θ)),

and then apply the fact that the function F is limited within the interval [a, b] :

|x′
n(t1) − x′

n(t2)| = |F (θ, xn(θ))||t1 − t2| < M |t1 − t2|. (17)

As the result of the evaluation conducted, get that:

δ =
ε

M
.

This is proved.
It is possible to select subsequence of the sequence x1, x2, x3, · · · , xn, · · · , which will

converge to a solution of the problem (1)-(2)-call it x∗(t).

Similarly, we can build an infinite sequence of solutions {xn}, which converges to some
solution x∗ of the equation (1) on the underside. Considering the boundary conditions

x(a) = A
1

un x(b) = B
1
,

where
A1 = α(a), B1 = α(b),

we obtain a solution x
1
, for which the following inequality is valid

α ≤ x
1
(t) ≤ β, ∀t ∈ [a, b].

Now specify once again α = x
1
(t), i.e. will take function x

1
(t) as the lower function,

because it conforms with the definition of the lower function. The following approximated
solution x

2
(t). The graph of the function x

2
(t) lies between graphes β(t) e x

1
(t). The

following inequality is valid for the function x
2
(t)

α ≤ x
1
(t) ≤ x

2
(t) ≤ β, ∀t ∈ [a, b].

Now take the function x
2
(t) as the lower function and consider the next approximation.

Continuing this process obtain an infinite sequence of functions {xn}. The following
dependence is valid for all elements of the sequence {xn} according the constructing
algorithm

x
1
≤ x

2
≤ x

3
· · · ≤ xn ≤ · · ·
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Now consider the choice of points Ai and Bi (i = 2, 3, . . . , n, . . . ) for boundary condi-
tions x(a) = Ai, x(b) = Bi. Let us write in the general form:

Ai = A − 1

i
(A − α(a)),

Bi = B − 1

i
(B − α(b)),

where i = 2, 3, . . . .
We can choose a subsequence from the infinite set of solutions, which converges to

a solution of the boundary problem (1)-(2), denote them by x∗(t). The verification is
analogous to the case of the set {xn}.

Out of the constructed infinite sequence, it is possible to select the subsequence con-
verging to a certain solution of the problem (1)-(2) x∗(t).

After the construction, the following inequality will be valid for the solutions x∗(t)
and x∗(t)

x∗(t) ≥ x∗(t),

because ∀n, k xn(t) ≥ xk(t). �

One can show monotone iterations schematically in such a way (Fig. 2.1.).
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Figure 2.1. The scheme of monotone iterations.

In the work [1, Theorem 2.8 ], the authors C. De Coster and P. Habets show the
mechanism of calculation of analytical entry for the functions of monotone iterations.

Consider the Dirichlet problem

u′′ = f(t, u), u(a) = 0, u(b) = 0, (18)

where f is a continuous function.
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Theorem 2.2 Let α and β ∈ C2([a, b]), α ≤ β. Assume f : ω(α, β) → R is a continuous
function, there exists M ≥ 0 such that for all (t, u1), (t, u2) ∈ ω(α, β),

u1 ≤ u2 implies f(t, u2) − f(t, u1) ≤ M(u2 − u1),

and for all t ∈ [a, b]

α′′(t) ≥ f(t, α(t)), α(a) ≤ 0, α(b) ≤ 0,
β′′(t) ≤ f(t, β(t)), β(a) ≥ 0, β(b) ≥ 0.

(19)

Then the sequences {αn} and {βn} defined by

α0 = α

α′′
n − Mαn = f(t, αn−1) − Mαn=1,

αn(a) = 0, αn(b) = 0
(20)

and
β0 = β,

β′′
n − Mβn = f(t, βn − 1) − Mβn−1

βn(a) = 0, βn(b) = 0
(21)

converge monotonically in C1([a, b]) to solutions umin and umax of (18) such that

α ≤ umin ≤ umax ≤ β.

Further, any solution u of (18) with graph in ω(α, β) verifies

umin ≤ u ≤ umax.

3 Properties of solution

In the article [5] the authors consider the methods of finding the solution for the second-
order equations (1) within the given interval, as well as the behaviour of the equation of
variations is analysed [5, Theorem 3.3].

Thus, the solution x(t) of (1) on a interval [a, b] has Property B ′ in case there exists
a seguence of solutions xn such that

• xn → x and x′
n → x′ uniformly on [a, b];

• 4n = x− xn 6= 0 and has the same sign for all n ≥ 1 and a ≤ t < b, or for all n ≥ 1
and a < t ≤ b;

• for each 0 < δ < 1

2
(b − a) there is a constant c depending on δ but not on n and t

such that | 4′
n(t) |≤ c | 4n(t) | for all n ≥ 1 and a + δ ≤ t ≤ b − δ.

For simplicity we will assume that f(t, x) is a continuous real-valued function defined on

S = {(t, x) : a ≤ t ≤ b, |x| + |x′| < +∞}.
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Theorem 3.1 Assume that f(t, x) has continuous first order partial derivatives fx and
f ′

x with respect to x and x′ on S. Let x0(t) be a solution of x′′ = f(t, x) having Property
(B′) on [a, b]. Then the linear equation

y′′ = fx(t, x0(t))y (22)

is disconjugate on the open interval (a, b).

Exploring the differential equation of variations

y′′ = ∂f

∂x
(t, ξ(t))y,

y(a) = 0, y′(a) = 1
(23)

for a definite solution ξ(t) of the differential equation (1), we will use the notions of “0-type
solution” or “1-type solution” in accordance with definitions in the paper [6].

The authors L. Jackson and K. Schrader in their theorem (Theorem 3.1) mention
zero-type solutions.

In our case, the task is to find non-zero-type solutions of the boundary problem(1)-(2),
i.e. such solutions that the respective equations of variations (23) are oscillatory within
the interval (a, b) and satisfy the remaining characteristics of (B ′).

4 Non-monotone iterative method

Monotone schemes are likely to be applicable if there are regular (α < β) α and
β. Iterations converge then to solutions x∗ and x∗, which are described in terms of the
equations of variations in the following way: the respective equation of variations is
disconjugate within the interval [a, b].

As there exist examples of equations, which have α and β, but there are solutions
x(t), for which the equation of variations is not disconjugate within the interval (a, b)
there appears the need to construct alternative non-monotone iterative schemes.

Let there exist a 1-type solution x(t) of the problem (1)-(2). Then there exists a
non-monotone iterative scheme.

Describe mechanism of constructing the non-monotone iterative scheme. As well as
in the case of monotone iterations, determine boundary conditions, only in this case take
points on different sides of A and B. For example, if x(a) ≥ A, then x(b) ≤ B and vice
verso (see Fig. 5.1).

Let us assume at the beginning that x(a) > A and x(b) < B, and set the first boundary
condition for the equation (1):

x(a) = A1, x(b) = B1,

where
α(a) < A1 < β(a), α(b) < B1 < β(b).

Accordingly [2, Theorem 7.19], a solution exists for the equation (1) which satisfies these
boundary conditions. Denote it u1. Afterwards define the next boundary conditions for
the differential equation (1):

x(a) = A2, x(b) = B2
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Figure 4.1. Choice of the boundary conditions, if A = B = 0.

and derive a solution u2. The following inequalities are valid

α(a) < A2 < A1 < β(a),

α(b) < B1 < B2 < β(b).

Now consider the choice of points Ai and Bi (1 = 2, 3, . . . , n, . . . ) for the boundary
conditions x(a) = Ai, x(b) = Bi.

Let us write in the general form:

Ai = A +
1

i + 1
(β(a) − A),

Bi = B − 1

i + 1
(B − α(b)),

where i = 1, 2, 3, · · · .

In the same way continue the algorithm. Take into account that all points Ai, where
i = 1, 2, 3 · · · , converge to the point A from above, and all points Bi (i = 1, 2, 3 · · · )
converge to the point B from below. Continuing this process, an infinite solutions sequence

u1, u2, · · · , un, · · · (24)

is constructed for the differential equation (1) with different boundary conditions. By
Theorem 4.1, one can choose a subsequence from the sequence (24), which converges to a
solution of the boundary value problem (1)-(2), denote it u∗. Analogously, construct the
infinite sequence of solutions {vn}. Let us assume that x(a) ≤ A un x(b) ≥ B.

Due to [2, Theorem 7.19], a solution exists for the equation (1) with the boundary
condition

x(a) = A1, x(b) = B1,

where
α(a) < A1 < β(a), α(b) < B1 < β(b).

Denote this solution v1. Then define the next boundary conditions for the differential
equation (1):

x(a) = A2, x(b) = B2

and obtain the solution v2. At the same time, the following inequalities have to be valid:

α(a) < A1 < A2 < β(a),
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α(b) < B2 < B1 < β(b).

And so on, continuing the algorithm.
Now consider the choice of points Ai and Bi (i = 1, 2, 3, . . . , n, . . . ) for the boundary

conditions x(a) = Ai, x(b) = Bi.

Let us write in general form:

Ai = A − 1

i + 1
(A − α(a)),

Bi = B +
1

i + 1
(β(b) − B),

where i = 1, 2, 3, · · · . Take into account that all points Ai (i = 1, 2, 3 · · · ) converge to the
point A from above and all points Bi (i = 1, 2, 3 · · · ) converge to the point B from below.
We apply Theorem 4.1 to the obtained sequence of solutions

v1, v2, · · · , vn, · · · (25)

and denote a solution, to which the subsequence of the sequence (25) converges, by v∗

In special case, the equality u∗ = v∗ can be valid for the solutions u∗ and v∗.
It follows from the construction that points Ai and Bi converge to points A and B

given in the conditions (2).

Theorem 4.1 From sequences {un} and {vn} subsequences which converge (may be non
monotonically) to a solution of the problem (1)-(2) can be selected.

Proof. We can show like in the proof of Theorem 2.1 that sequences {un} and {vn}
satisfy the Arzela-Ascoli criterium. �

In the next section, this scheme is applied to construct an example.

5 Example

Let us give an example, in which there exist both upper and lower functions α and
β, and show that in addition to solutions mentioned in L.Jackson-K.Schrader’s theorem
there exist other solutions. As the result of analysis made in terms of the equation of
variations, properties of these solutions differ. For L.Jackson-K.Schrader’s solutions it
is possible to construct monotone iterative schemes, while for the trivial solution such a
scheme does not exist. Let us construct non-monotone sequences leading to the trivial
solution. So, let us consider the boundary value problem

x′′ = x3 − kx where k = 12 (26)

together with the boundary conditions

x(0) = x(1) = 0. (27)

The upper and lower functions are β = 4 and α = −4, since they satisfy the conditions
(3).
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Undoubtedly, ξ ≡ 0 is the trivial solution of problems (26)–(27). Let us construct the
equation of variations for the solution ξ ≡ 0 of the problem (26)–(27).

y′′ = fx(t, ξ(t)) |ξ≡0 y = −ky where k = 12 (28)

Also consider the initial conditions

y(0) = 0 and y′(0) = 1. (29)

The solution of the problem (28)–(29) is (Figure 5)

y =
1√
k

sin
√

k t where k = 12 (30)

In our case a solution y(t) of the equation of variations with respect to ξ ≡ 0 has the zero
in the interval (0; 1). And it follows that ξ(t) is a 1-type solution of the problem.
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Figure 5.1. a. The solution of the problem (28)-(29);
b. The L.Jackson-K.Schrader’s solutions.

According to L. Jackson-K. Schrader’s theorem it follows that there exists a solution
such that the respective equation (28) is disconjugate in the interval (0; 1) (Figure 5.1
a). The Figure 5.2 gives examples of monotone iterations, with the help of which L.
Jackson-K. Schrader’s solutions can be approximated.
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Figure 5.2. The monotone iteration of L. Jackson-K. Schrader’s
solutions x∗ and x∗.

Let us construct non-monotone sequences converging to the trivial solution. By giving
different boundary values (Figure 5.3), according to the scheme described in Section 4,
the following sequences of solutions are obtained (Figure 5.4).

Having fixed one of the boundary values x(0) = 0, it is possible to notice that all
approximations intersect at the point t = π√

k
. It is possible to choose the subsequence of

the obtained infinite sequence of solutions, which converges to the trivial solution (Figure
5.5).

Thus the non-monotone iterative scheme is constructed.
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Figure 5.3. The curves of solutions u1, u2 and v1, v2.
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Figure 5.4. Non-monotone approximations of the trivial solution.
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Figure 5.5. Non-monotone approximations for fixed boundary condition x(0) = 0.
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M. Dobkeviča. Nemonotonas iterat̄ıvas shēmas.

Anotācija. Tiek apskat̄ıts divu punktu robežproblēma x′′ = f(t, x), x(a) = A, x(b) =
B kurai eksistē tā saucamās augšējā un apakšējā funkcijas. Uz noteiktā piemēra vienam no
problēmas risinājumiem, respekt̄ıvi, tam, kuram diferenciālvienādojums oscilē variācijās,
tiek veidota nemonotona itera-t̄ıvā shēma.
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