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Comparison of the Dirichlet and Neumann boundary
value problems for a certain equation with period

annuli

S. Atslēga

Summary. We consider the specific second order autonomous equation which has
multiple period annuli (connected continua of periodic solutions). These period annuli
contain also solutions of the Dirichlet and Neumann problem. We compute them and give
theoretical explanation of multiplicity of solutions. Comparison of both problems have
been made.

MSC: 34B15, 34C25

1 Introduction

We provide the multiplicity results for the boundary value problem (BVP) where the
second order differential equation is of the form

x′′ + g(x) = 0. (1)

From the point of view of the BVP periodic solutions with appropriate periods may satisfy
some prescribed boundary conditions. We consider the Dirichlet boundary conditions

x(0) = 0, x(1) = 0 (2)

and the Neumann boundary conditions

x′(0) = 0, x′(1) = 0. (3)

Consider the equivalent two-dimensional differential system

x′ = y, y′ = −g(x). (4)

It has critical points at (pi, 0), where pi are simple zeros of g(x). Recall that a critical point
O of (4) is a center if it has a punctured neighborhood covered with nontrivial cycles.
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Definition 1.1 ( [3]) A central region is the largest connected region covered with cycles
surrounding O.

Definition 1.2 ([3]) A period annulus is every connected region covered with nontrivial
concentric cycles.

Definition 1.3 We will call a period annulus associated with a central region a trivial
period annulus. Periodic trajectories of a trivial period annulus encircle exactly one
critical point of the type center.

Definition 1.4 Respectively a period annulus enclosing several (more than one) critical
points will be called a nontrivial period annulus.

2 Nontrivial period annuli

Consider equation (1), where the function g(x) is polynomial

g(x) = −x(x + 3)(x + 2.2)(x + 1.9)(x + 0.8)(x− 0.3)(x− 1.5)(x− 2.3)(x− 2.9), (5)

like in Fig. 2.1.

Proposition 2.1 Critical points of the system (4) are “saddles” and “centers” which
alternate.

The primitive G(x) =
∫ x

0
g(s) ds may have multiple maxima (see Fig. 2.1). It is easy

to observe that the equivalent differential system (4) has centers at the points (mi, 0)
and saddle points at (Mj, 0), where mi and Mj are points of local minima and maxima
respectively.
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Fig. 2.1 Function g(x) and its primitive function G(x).

Theorem 2.1 ([4]) Let M1 and M2 (M1 < M2) be non-neighbouring points of maximum
of the function G(x). Suppose that any other local maximum of G(x) in the interval
(M1,M2) is (strictly) less than min{G(M1); G(M2)}.

Then there exists at least one nontrivial period annulus.

Figure 2.2 a visualizes Theorem 2.1 and as the result there are 3 nontrivial period
annuli (their x-locations are shown by arrows). The typical phase portrait for system (4)
is given in Fig. 2.2 b. Also in this figure three nontrivial period annuli are depicted which
enclose several (respectively 3, 5 or 7) critical points.
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Fig. 2.2 a. Primitive function; b. phase portrait.

3 Neumann problem

Consider equation (1) together with conditions (3).

Definition 3.1 Intersection of a period annulus P with the positive half-plane (x, x′),
x > 0, will be called a positive part of P and denoted P+.

Definition 3.2 Intersection of a period annulus P with the negative half-plane (x, x′),
x < 0, will be called a negative part of P and denoted P−.

Let us introduce the notation.
If P+ is a positive part and if γ = x′(0) > 0 varies between min and max values, then

T+(γ) is a time needed for (x(t), x′(t)) to move from a position (0, γ) to (0,−γ).
If P− is a negative part and if −γ = x′(0) < 0 varies between min and max values,

then T−(−γ) is a time needed for (x(t), x′(t)) to move from a position (0,−γ) to (0, γ).

3.1 Trivial period annuli

Theorem 3.1 [2] Let the conditions

k2π2 < |gx(mi)| < (k + 1)2π2 (6)

hold. Then the Neumann BVP (1), (3) has at least 2k nonconstant periodic solutions.

Function g(x) has 4 minima, so there are 4 trivial period annuli (see Fig. 3.1).
By computing of gx(−2.2) = 156.923, gx(−0.8) = 78.6534, gx(0.3) = 37.3745, gx(2.3) =

685.644 we get that the conditions

32π2 < 156.9230 < 42π2,
22π2 < 78.6534 < 32π2,
12π2 < 37.3745 < 22π2,
82π2 < 685.6440 < 92π2

hold. Then by Theorem 3.1 the Neumann BVP (1), (3) has at least 28 solutions (see Fig. 3.2)



52

Fig. 3.1 Phase portrait with trivial period annuli.
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Fig. 3.2 Solutions of the BVP (1), (3).

3.2 Nontrivial period annuli

Theorem 3.2 Suppose equation (1) has multiple period annuli Pi, i = 1, 2, . . . ,m. Let Px

be intersection of a period annulus Pi with the x-axis (this intersection is a sum of two
open intervals I1 and I2). Let Ti(x) denote the time needed for a point (x, 0), x ∈ I1, to
move along a trajectory of the equation to its position (x∗, 0) in I2, x′(t) being nonnegative.
Denote Timin = min{Ti(x) : x ∈ I1}.

Suppose that positive integers ki satisfy the relations

kiTimin < 1 < (ki + 1)Timin. (7)

Then the problem (1), (3) has at least 4(k1 + . . . + km) solutions.

Remark 3.1. The half-period T (x) is given by the formula

T (x) =
1√
2

∫ x1

x

ds√
G(s)−G(x)

,

where x1 is the first zero of the function θ(s) = G(s)−G(x) = 0 to the right of x.
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The first period annulus encloses 7 critical points.

Fig. 3.3 The first period annulus (grey color) in the phase plane.

Calculating T1min = 0.52 and using the theorem 3.2 we get k1 = 1.
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Fig. 3.4 a. Graphs of T (x) (x(0) ∈ (2.663; 2.9)); b. solutions of the BVP (1), (3).

The second period annulus encloses 5 critical points.

Fig. 3.5 The second period annulus (grey color).

Calculating T2min = 0.62 and using the theorem 3.2 we get k2 = 1.
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Fig. 3.6 a. Graphs of T (x) (x(0) ∈ (1.035; 1.5)); b. solutions of the BVP (1), (3).
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The third period annulus encloses 3 critical points.

Fig. 3.7 The third period annulus (grey color).

Calculating T3min = 0.56 and using the theorem 3.2 we get k3 = 1.
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Fig. 3.8 a. Graphs of T (x) (x(0) ∈ (0.443; 1.035)); b. solutions of the BVP (1), (3).

By Theorem 3.2 the Neumann BVP has 4(1 + 1 + 1) = 12 solutions (nontrivial period
annuli). So the Neumann BVP has 40 solutions (counting all solutions in the trivial and
nontrivial period annuli).

4 Dirichlet problem

Consider Dirichlet problem (1), (2).
The time that is needed to go from a point (0, γ) to the point (0,−γ) by trajectory is

given by the formula

T = 2

∫ x1

0

dx√
γ2 − 2G(x)

,

where γ =
√

2G(x1), x1 is a point of intersection of the graph of a solution with the
x-axis.

Suppose that a period annulus P has both negative and positive parts P− and P+.
Denote T+(γ) the time needed to go from a point (0, γ) to the symmetrical point (0,−γ)
along the trajectory, and T−(−γ) the time to go from a point (0,−γ) to (0, γ), γ > 0. If γ
tends to γhomoclinic and the positive part (x > 0) of a homoclinic solution contains a saddle
point then T+(γ) → +∞. The function T−(−γ) tends to some finite value T−(−γhomoclinic),
because the negative part (x < 0) of a homoclinic solution does not contain critical points.
If a saddle point of homoclinic solution is in the negative part then T−(−γ) tends to +∞
as −γ tends to −γhomoclinic and T+(γ) tends to a finite value T+(γhomoclinic).
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4.1 Nontrivial period annuli

The first period annulus (see Fig. 3.3)
Intersection of the first period annulus with the x′-axis consists of two intervals

(γ2homoclinic, γ1homoclinic) and the symmetrical one (−γ1homoclinic,−γ2homoclinic). Homoclinic
solutions with the initial values at (0, γ2homoclinic) and (0, γ1homoclinic) form inner and outer
boundaries of the first period annulus. Both have saddle points in the positive part P+.
That is why T (γ) tends to infinity as γ tends to γ2homoclinic or γ1homoclinic.

One has that T−(γ1homoclinic) and T−(γ2homoclinic) are finite, moreover T−(γ1homoclinic) <
T−(γ2homoclinic). We consider the time T (γ) which is needed to go from a point (0, γ),
γ2homoclinic < γ < γ1homoclinic, to itself along the trajectory. By calculating we get the
minimal time T++T− = 1.1224 > 1. So there are not Dirichlet solutions with T++T− = 1.
On the other hand, T+min = 0.436609. In this case there are 2 solutions.
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Fig. 4.1 a. Time T+; b. time T+ + T−.

Similarly for moving from point (0;−γ) we get: T− + T+ = 1.1224 > 1 (therefore no
solutions with T− + T+ = 1) and T−max = T−(γ2homoclinic) = 0.496375. So there are no
solutions of the Dirichlet problem with x′(0) ∈ (γ2homoclinic, γ1homoclinic).
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Fig. 4.2 a. Time T−; b. time T− + T+.

Both cases are shown in Fig. 4.3.

0.2 0.4 0.6 0.8 1.0 1.2

-2

-1

1

2

3

0.2 0.4 0.6 0.8 1.0 1.2

-2

-1

1

2

3

Fig. 4.3 Solutions for problem (1), (2) (bold lines).
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The second period annulus (see Fig. 3.5)

The second period annulus has two homoclinic solutions (the second one encloses
the third) with the property: T−(γ2homoclinic) and T+(γ3homoclinic) are finite. We consider
the time that is needed to go from a point (0; γ) to the same point by trajectory where
γ3homoclinic < γ < γ2homoclinic. By calculating we get the minimal time T++T− = 1.42962 >
1. So there are no Dirichlet solutions with T+ + T− = 1. Then consider the time that is
needed to go from a point (0; γ) to the point (0;−γ), T+min ≤ T+(γ3homoclinic) = 0.436609.
In this case there is one solution.
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Fig. 4.4 a. Time T+; b. time T+ + T−.

Similarly for moving from a point (0;−γ) we get: T− + T+ = 1.42962 > 1 (whitout
solutions) and T−min ≤ T−(γ2homoclinic) = 0.71020. So there is one solution.

-9.0 -8.5 -8.0 -7.5 -7.0 -6.5

0.5

1.0

1.5

2.0

-9.0 -8.5 -8.0 -7.5 -7.0 -6.5

0.5

1.0

1.5

2.0

a. b.

Fig. 4.5 a. Time T−; b. time T− + T+.

Both cases are shown in Fig. 4.6.
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Fig. 4.6 Solutions for the problem (1), (2) (bold lines).

The third period annulus (see Fig. 3.7)

The third period annulus is bounded by outer homoclinic solution (γ = γ3homoclinic).
The inner boundary is figure-eight which is formed by two homoclinic solutions. They
share common saddle point at (0, 0). One has that T+(γ3homoclinic) is finite. We consider
the time that is needed to go from a point (0; γ) to the same point by trajectory where
0 = γ4homoclinic < γ < γ3homoclinic. By calculating we get the minimal time T+ + T− =
1.1224 > 1. So there are not Dirichlet solutions with T+ +T− = 1. Then consider the time
that is needed to go from a point (0; γ) to the point (0;−γ), T+min ≤ T+(γ3homoclinic) =
0.436609. In this case there is one solution.
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Fig. 4.7 a. Time T+; b. time T+ + T−.

Similarly for moving from a point (0;−γ) we get: T− + T+ = 1.1224 > 1 (no solutions
with T− + T+ = 1) and T−min = 0.669609. So there are 2 solutions.
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Fig. 4.8 a. Time T−; b. time T− + T+.

Both cases are shown in Fig. 4.9.
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Fig. 4.9 Solutions for the problem (1), (2) (bold lines).

The Dirichlet problem (1), (2) has 7 solutions.

5 Comparison and conclusions

In this paper we considered specific the second order equation where g(x) is a polynomial
of ninth order. Its derivative is the tenth order polynomial with five local maxima. There
are three pairs of nonneighboring maxima such that the inner maxima are less than
outer ones. This ensures the existence of three period annuli which are continua of period
solutions. The numeric analysis of periods shows that there exist 7 solutions which satisfy
the Dirichlet boundary conditions x(0) = 0, x(1) = 0.

Solutions of the Neumann problem (x′(0) = 0, x′(1) = 0) are numerous. One of the
reasons is that all critical points of the system x′ = y, y′ = −g(x) are located on the x-
axis. Any of these critical points is surrounded by closed trajectories which form regions
containing multiple solutions of the Neumann problem. There are two types of solutions
to the Neumann problem.
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The first type solutions form orbits which are contained in the central regions (trivial
period annuli) around the critical points of the type center (there are four). There are 28
solutions of the first kind.

The second type solutions have orbits which are contained in nontrivial period annuli
(they are three).

The number of solutions of the Neumann problem in any period annulus is dependent
on the minimal period of solutions in it.
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Ñ. Àòñëåãà. Êðàåâûå çàäà÷è Äèðèõëå è Íåéìàíà äëÿ îäíîãî óðàâíåíèÿ.
Àííîòàöèÿ. Ðàññìàòðèâàåòñÿ ñïåöèôè÷åñêîå àâòîíîìíîå óðàâíåíèå âòîðîãî ïîðÿä-

êà, èìåþùåå ïåðèîäè÷åñêèå êîëüöà. Ýòè ïåðèîäè÷åñêèå ðåøåíèÿ ñîäåðæàò òàêæå
ðåøåíèÿ çàäà÷ Äèðèõëå è Íåéìàíà, êîòîðûå ïîäñ÷èòûâàþòñÿ è äàåòñÿ òåîðåòè÷åñêîå
îáîñíîâàíèå ÷èñëà ðåøåíèé. Ïðîâåäåíî ñðàâíåíèå äâóõ êðàåâûõ çàäà÷.

ÓÄÊ 517.927

S. Atslēga. Dirihlē un Neimana problēmas vienam vienādojumam.
Anotācija. Apskat̄its otrās kārtas specifisks autonoms vienādojums, kuram ir pe-

riodiskie gredzeni. Šie periodiskie gredzeni satur ar̄i Dirihlē un Neimana problēmas
atrisinājumus. Tiek aprēķināti un doti teorētiskie pamatojumi par atrisinājumu skaitu.
Salidzinātas divas problēmas.
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