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On Nonlinear Spectrum for some Nonlocal
Boundary Value Problem

N. Sergejeva

Summary. We construct Fučik spectrum for specific differential equation. This
spectrum differs essentially from the known ones.

1991 MSC primary 34B15 26B40

1 Introduction

Investigations oh Fučik spectra have started in sixties of XX century. Let us mention
the work [5] and the bibliography therein. Of the recent works let us mention [7],
[8]. The Fučik spectra have been investigated for the second order equation with
different two-points boundary conditions. Less works are about the higher order
problems.

Our goal is to get formulas for the second order BVP

x′′ = −2µ4x3+ + 2λ4x3−, µ, λ ≥ 0 (1.1)

with the boundary conditions

x(0) = 0,

1∫

0

x(s)ds = 0. (1.2)

To the best of our knowledge Fučik spectra for problems with nonlocal boundary
conditions were not considered previously.

In this paper we provide explicit formulas for Fučik spectrum of the problem
(1.1), (1.2). This spectrum differs essentially from the classical one. These formulas
were carried out using the functions, which are known as the lemniscatic functions

1Supported by ESF project Nr. 2004/0003/VPD1/ESF/PIAA/04/NP/3.2.3.1./0003/0065



96

[9]. So lemniscatic sine and cosine will be denoted sl t and cl t respectively. The
formulas for relations between lemniscatic functions and their derivatives are known
[2].

This paper is organized as follows.
In Section 2 we present results on the Fučik spectrum for the problem (1.1) with

boundary conditions x(0) = x(1) = 0. In Section 3 we consider the problem (1.1),
(1.2) and construct the Fučik spectrum for this problem. This is the main result of
the work. Connection between the spectra are discussed in Section 4.

2 The second order problem with the boundary

conditions x(0) = x(1) = 0

Consider the equation

x′′ = −2µ4x3+ + 2λ4x3−, µ, λ ≥ 0, (2.1)

x+ = max{x, 0}, x− = max{−x, 0},
with the boundary conditions

x(0) = x(1) = 0, |x′(0)| = 1. (2.2)

Definition 1 The spectrum is a set of points (λ, µ) such that the problem (2.1),
(2.2) has nontrivial solutions.

The first result describes decomposition of the spectrum into branches F+
i and

F−
i (i = 0, 1, 2, . . .) according to the number of zeroes of the derivative of a solution

to the problem (2.1), (2.2) in the interval (0, 1).

Proposition 1 The Fučik spectrum consists of the set of curves
F+

i = {(λ, µ)| x′(0) = 1, the nontrivial solution of the problem(2.1), (2.2) x(t)
has exactly i zeroes in (0, 1)};

F−
i = {(λ, µ)| x′(0) = −1, the nontrivial solution of the problem(2.1), (2.2) x(t)
has exactly i zeroes in (0, 1)}.

Theorem 2.1 ([8], subsection 3.2.1) The Fučik spectrum for the problem (2.1),
(2.2) consists of the branches given by

F+
0 =

{
(λ, 2A)

}
,

F−
0 =

{
(2A, µ)

}
,

F+
2i−1 =

{
(λ, µ)

∣∣∣ i
2A

µ
+ i

2A

λ
= 1

}
,

F+
2i =

{
(λ, µ)

∣∣∣ (i + 1)
2A

µ
+ i

2A

λ
= 1

}
,
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F−
2i−1 =

{
(λ, µ)

∣∣∣ i
2A

µ
+ i

2A

λ
= 1

}
,

F−
2i =

{
(λ, µ)

∣∣∣ i
2A

µ
+ (i + 1)

2A

λ
= 1

}
,

where A =
1∫
0

ds√
1−s4 , i = 1, 2, . . ..

Some first branches of the spectrum to the problem (2.1), (2.2) are depicted in
Figure 1.
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Figure 1: The spectrum for the problem (2.1), (2.2).

3 The second order problem with nonlocal

boundary condition

Consider the equation

x′′ = −2µ4x3+ + 2λ4x3−, µ, λ ≥ 0, (3.1)

x+ = max{x, 0}, x− = max{−x, 0},
with the boundary conditions

x(0) = 0,

1∫

0

x(s)ds = 0. (3.2)

Decomposition of the spectrum for the problem (3.1), (3.2) into branches F+
i

and F−
i (i = 1, 2, . . .) is the same as that for the problem (2.1), (2.2).
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The next theorem is the main result of this work.

Theorem 3.1 The Fučik spectrum for the problem (3.1), (3.2) consists of the branches
given by

F+
2i−1 =

{
(λ, µ)

∣∣∣ 2iλ

µ

π

4
− (2i− 1)µ

λ

π

4
−

µ arctan cl (λ− λ2A
µ

i + 2Ai)

λ
= 0,

i
2A

µ
+ (i− 1)

2A

λ
≤ 1, i

2A

µ
+ i

2A

λ
> 1

}
,

F+
2i =

{
(λ, µ)

∣∣∣ (2i + 1)λ

µ

π

4
− 2iµ

λ

π

4
− λ arctan cl (µ− µ2A

λ
i + 2Ai)

µ
= 0,

i
2A

µ
+ i

2A

λ
≤ 1, (i + 1)

2A

µ
+ i

2A

λ
> 1

}
,

F−
2i−1 =

{
(λ, µ)

∣∣∣ 2iµ

λ

π

4
− (2i− 1)λ

µ

π

4
− λ arctan cl (µ− µ2A

λ
i + 2Ai)

µ
= 0,

(i− 1)
2a

µ
+ i

2A

λ
≤ 1, i

2A

µ
+ i

2A

λ
< 1

}
,

F−
2i =

{
(λ, µ)

∣∣∣ (2i + 1)µ

λ

π

4
− 2iλ

µ

π

4
−

µ arctan cl (λ− λ2A
µ

i + 2Ai)

λ
= 0,

i
2A

µ
+ i

2A

λ
≤ 1, i

2A

µ
+ (i + 1)

2A

λ
1
}

,

where cl (t) is the lemniscatic cosine function, A =
1∫
0

ds√
1−s4 , i = 1, 2, . . ..

Proof. Consider the problem (3.1), (3.2).
It is clear that x(t) must have zeroes in (0, 1). That is why F±

0 = ∅.
We will prove the theorem for the case of F+

1 . Suppose that (λ, µ) ∈ F+
1 and let

x(t) be a respective nontrivial solution of the problem (3.1), (3.2). The solution has
only one zero in (0, 1) and x′(0) = 1. Let this zero be denoted by τ.

Consider a solution of the problem (3.1), (3.2) in the interval (0, τ) and in the
interval (τ, 1). We obtain that the equation (3.1) in these intervals reduces to the
Emden - Fowler differential equations. So in the interval (0, τ) we have the problem
x′′ = −2µ4x3 with boundary conditions x(0) = x(τ) = 0, but in the interval (τ, 1)
we have the problem x′′ = −2λ4x3 with boundary condition x(τ) = 0. In view of
(3.2) a solution x(t) must satisfy the condition

τ∫

0

x(s)ds =
∣∣∣

1∫

τ

x(s)ds
∣∣∣. (3.3)

Since x(t) = 1
µ
, x(τ) = 0 and the first positive zero of sl (ξ) is at 2A, we obtain τ =

2A
µ

. In view of this equality it is easy to get that
τ∫
0

x(s)ds = 1
µ2

(
π
4
− arctan cl 2A

)
=

2
µ2

π
4
. We use here the formula (4.4) from [1, p.27]. We have also

x′
(2A

µ

)
= −1. (3.4)
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Now we consider a solution of the problem (3.1), (3.2) in [τ, 1].Since x(t) =

− 1
λ
sl (λt− λ2A

µ
we obtain

∣∣∣
1∫
τ

x(s)ds
∣∣∣ = 1

λ2

(
π
4
− arctan cl (λ− λ2A

µ
)
)
.

We have also that

x′
(2A

µ

)
= −1. (3.5)

In view of the last equality and (3.3) we obtain 2
µ2

π
4

= 1
λ2

(
π
4
−arctan cl (λ−λ2A

µ
)
)
.

Multiplying by µλ, we obtain

2λ

µ

π

4
− µ

λ

π

4
+

µ arctan cl (λ− λ2A
µ

)

λ
= 0. (3.6)

Considering the solution of the problem (3.1), (3.2) it is easy to prove that
0 < 2A

µ
< 1 < 2A

µ
+ 2A

λ
.

This result and (3.6) prove the theorem for the case of F+
1 . The proof for other

branches is analogous. ¤
Visualization of the spectrum to the problem (3.1), (3.2) is given in Figure 2.

Figure 2: The spectrum for the problem (2.1), (2.2).

4 Comparison

Now we consider the equation (3.1) with boundary conditions

x(0) = 0, (1− α)x(t) + α

1∫

0

x(s)ds = 0, α ∈ [0; 1]. (4.1)
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Theorem 4.1 The Fučik spectrum
∑

α =
+∞⋃
i=0

F±
i for the problem (3.1), (4.1), where

meaning of the notation is the same as earlier, consists of the branches given by
(where i = 1, 2, . . .)

F+
2i−1 =

{
(λ, µ)

∣∣∣ 2iλ

µ

π

4
α− (2i− 1)µ

λ

π

4
α−

µα arctan cl
(
λ− λ2Ai

µ
+ 2Ai

)

λ
+

+µsl
(
λ− λ

2Ai

µ
+ 2Ai

)
− αµsl

(
λ− λ

2Ai

µ
+ 2Ai

)
= 0,

i
2A

µ
+ (i− 1)

2A

λ
≤ 1, i

2A

µ
+ i

2A

λ
> 1

}
,

F+
2i =

{
(λ, µ)

∣∣∣ (2i + 1)λ

µ

π

4
α− 2iµ

λ

π

4
α−−

λα arctan cl
(
µ− µ2Ai

λ
+ 2Ai

)

µ
+

+λsl
(
µ− µ

2Ai

λ
+ 2Ai

)
− αλsl

(
µ− µ

2Ai

λ
+ 2Ai

)
= 0,

i
2A

µ
+ i

2A

λ
≤ 1, (i + 1)

2A

µ
+ i

2A

λ
> 1

}
,

F−
2i−1 =

{
(λ, µ)

∣∣∣ 2iµ

λ

π

4
α− (2i− 1)λ

µ

π

4
α−

λα arctan cl
(
µ− µ2Ai

λ
+ 2Ai

)

µ
+

+λsl
(
µ− µ

2Ai

λ
+ 2Ai

)
− αλsl

(
µ− µ

2Ai

λ
+ 2Ai

)
= 0,

(i− 1)
2A

µ
+ i

2A

λ
≤ 1, i

2A

µ
+ i

2A

λ
> 1

}
,

F−
2i =

{
(λ, µ)

∣∣∣ (2i + 1)µ

λ

π

4
α− 2iλ

µ

π

4
α−

µα arctan cl
(
λ− λ2Ai

µ
+ 2Ai

)

λ
+

+µsl
(
λ− λ

2Ai

µ
+ 2Ai

)
− αµsl

(
λ− λ

2Ai

µ
+ 2Ai

)
= 0,

i
2A

µ
+ i

2A

λ
≤ 1, i

2A

µ
+ (i + 1)

2A

λ
> 1

}
.

Proof. The proof of Theorem is analogous to that of Theorem 3.1. ¤

Remark 4.1 If α = 0 we obtain the problem (2.1), (2.2). In case of α = 1 we have
the problem (3.1), (3.2).

The branches F±
1 to F±

5 of the spectrum for the problem (3.1), (4.1) for several
values of α are depicted in Figures 3 and 4 in the case of a = 0, b = 1.
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Figure 3: The Fučik spectrum for the problem (3.1), (4.1) for same α values
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ities. Čas. pěst. mat., 1983, Vol. 108, 29 - 39.
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Í. Ñåðãååâà. Ñïåêòðû Ôó÷èêà äëÿ îäíîé êðàåâîé çàäà÷è ñ íåëî-
êàëüíûì ãðàíè÷íûì óñëîâèåì.

Àííîòàöèÿ. Íàìè ïîñòðîåíû ñïåêòðû Ôó÷èêà äëÿ íåêîòîðîãî íåëèíåéíîãî
äèôôåðåíöèàëüíîãî óðàâíåíèÿ âòîðîãî ïîðÿäêà. Íàøè ñïåêòðû îòëè÷àþòñÿ îò
èçâåñòíûõ.

ÓÄÊ 517.51 + 517.91

N.Sergejeva. Fu�cika spektri robe�zprobl	emai ar nelok	alo nosac	�jumu.
Anot	acija. M	es konstru	ejam Fu�cika spektrus k	adam neline	aram otr	as k	artas

diferenci	alvien	adojumam. M	usu spektri at�s�kir	as no zin	amiem.
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