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On Nonlinear Spectrum for some Nonlocal
Boundary Value Problem

N. Sergejeva

Summary. We construct Fucik spectrum for specific differential equation. This
spectrum differs essentially from the known ones.
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1 Introduction

Investigations oh Fucik spectra have started in sixties of XX century. Let us mention
the work [5] and the bibliography therein. Of the recent works let us mention [7],
[8]. The Fucik spectra have been investigated for the second order equation with
different two-points boundary conditions. Less works are about the higher order
problems.

Our goal is to get formulas for the second order BVP

2" = —2pt e 42X, A > 0 (1.1)

with the boundary conditions

2(0) = 0, /x(s)ds —0. (12)

To the best of our knowledge Fucik spectra for problems with nonlocal boundary
conditions were not considered previously.

In this paper we provide explicit formulas for Fucik spectrum of the problem
(1.1), (1.2). This spectrum differs essentially from the classical one. These formulas
were carried out using the functions, which are known as the lemniscatic functions
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[9]. So lemniscatic sine and cosine will be denoted sl¢ and clt respectively. The
formulas for relations between lemniscatic functions and their derivatives are known
[2].

This paper is organized as follows.

In Section 2 we present results on the Fucik spectrum for the problem (1.1) with
boundary conditions (0) = (1) = 0. In Section 3 we consider the problem (1.1),
(1.2) and construct the Fucik spectrum for this problem. This is the main result of
the work. Connection between the spectra are discussed in Section 4.

2 The second order problem with the boundary
conditions x(0) =x(1) =0

Consider the equation

o —2y4x3+ + 2)\4363_, A >0, (2.1)

r" =max{r,0}, 2~ =max{—z,0},

with the boundary conditions
z(0)=z(1)=0, |2/(0)|=1. (2.2)

Definition 1 The spectrum is a set of points (A, ) such that the problem (2.1),
(2.2) has nontrivial solutions.

The first result describes decomposition of the spectrum into branches F" and
F7 (i=0,1,2,...) according to the number of zeroes of the derivative of a solution

to the problem (2.1), (2.2) in the interval (0, 1).

Proposition 1 The Fucik spectrum consists of the set of curves

Fr={(\p)| 2 (0) =1, the nontrivial solution of the problem(2.1),(2.2) z(t)
has exactly i zeroes in (0,1)};

F7 ={(\ p)| 2/(0) = =1, the nontrivial solution of the problem(2.1),(2.2) x(t)
has exactly i zeroes in (0,1)}.

Theorem 2.1 ([8], subsection 3.2.1) The Fucik spectrum for the problem (2.1),
(2.2) consists of the branches given by

f-{oen)

Fy = {(?Aw)},

2A  2A
Fy, = {(/\7,“)‘ @7 +ZT = 1}7

B ={Owm)| i+ 1)%“2% —1},



where A = f

A i=1,2,.

Some first branches of the spectrum to the problem (2.1), (2.2) are depicted in
Figure 1.
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Figure 1: The spectrum for the problem (2.1), (2.2).

3 The second order problem with nonlocal
boundary condition

Consider the equation
o = =2t 42X 3T, A >0, (3.1)

r" = max{r,0}, 2~ =max{—z,0},

with the boundary conditions
1
z(0) =0, /x(s)ds = 0. (3.2)
0

Decomposition of the spectrum for the problem (3.1), (3.2) into branches F;"
and F;” (i =1,2,...) is the same as that for the problem (2.1), (2.2).
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The next theorem is the main result of this work.

Theorem 3.1 The Fucik spectrum for the problem (3.1), (3.2) consists of the branches
given by

ot :{()\ » %E_(22'_1)#1_uarctancl()\—)\%i—i-QAi) 0
st ’ p 4 A4 A ’
42A+(, 1)2A<1 ,2A+,2A>1}
i— 4 (i —1)— i— 4 i—
ft AT A ’
o {()\ “)’ (2i+DAT 2ipm Aarctancl (p — p22i + 2Aq) 0
2 ’ w4 X4 L ’
,2A+,2A<1 <,+1)2A+,2A>1}
i . i~ <1 . i~ ,
- :{()\ ) @z_(22’—1))\Z_/\arctancl(,u—,u%i—i—ZAz’):O
2t ’ A4 4 n ’
i—1)—+i— i— +i—
TR TR ’
f_— {()\ u)’ (2”1)“1_%1_ uarctancl()\—)\%i—i-ZAi) 0
2 ’ AN 4 u 4 A ’
,2A+,2A<1 ,2A+(,+1)2A 1}
i— +i— i— + (i —
1t AT AT

ds .
V1-st’ v

1
where cl(t) is the lemniscatic cosine function, A = [ =1,2,....

0
Proof. Consider the problem (3.1), (3.2).

It is clear that z(¢) must have zeroes in (0,1). That is why F;" = ().

We will prove the theorem for the case of F;". Suppose that (), u) € F;" and let
x(t) be a respective nontrivial solution of the problem (3.1), (3.2). The solution has
only one zero in (0, 1) and 2/(0) = 1. Let this zero be denoted by 7.

Consider a solution of the problem (3.1), (3.2) in the interval (0,7) and in the
interval (7,1). We obtain that the equation (3.1) in these intervals reduces to the
Emden - Fowler differential equations. So in the interval (0, 7) we have the problem
2" = —2p*z3 with boundary conditions z(0) = z(7) = 0, but in the interval (7, 1)
we have the problem z” = —2\*z3 with boundary condition z(7) = 0. In view of
(3.2) a solution z(t) must satisfy the condition

/x(s)ds - ’/Ix(s)ds

Since x(t) = ﬁ, z(7) = 0 and the first positive zero of sl (£) is at 24, we obtain 7 =

. (3.3)

%. In view of this equality it is easy to get that [ x(s)ds = M—lg(jl—r — arctan cl 2A) =
0

2% We use here the formula (4.4) from [1, p.27]. We have also

:ﬂ(%) =1 (3.4)
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Now we consider a solution of the problem (3.1), (3.2) in [7,1].Since z(t) =
1

fx(s)ds’ = (5 —arctancl (A — )\%)).

—3sl (At — )\% we obtain =33

T

We have also that

ﬂ(%) — 1 (3.5)

In view of the last equality and (3.3) we obtain
Multiplying by pA, we obtain

54 = 3 (§—arctancl (A=222)).

arctancl (A — \24
DT pm M A=ND (3.6)
w4 A4 A

Considering the solution of the problem (3.1), (3.2) it is easy to prove that

D<2d <2424
H M A

This result and (3.6) prove the theorem for the case of F;". The proof for other

branches is analogous. [

Visualization of the spectrum to the problem (3.1), (3.2) is given in Figure 2.
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Figure 2: The spectrum for the problem (2.1), (2.2).

4 Comparison

Now we consider the equation (3.1) with boundary conditions

z(0) =0, (1—a)x(t)+ &/x(s)ds =0, a €[0;1]. (4.1)
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U F* for the problem (3.1), (4.1), where

+
Theorem 4.1 The Fucik spectrum ), =

=0
meaning of the notation is the same as earlier, consists of the branches given by

(where i =1,2,...)

Ai .
2T (2i—Dpm pv arctan cl ()\— )\27 +2A2>

e N R ; ¥
+psl (A—AQTA’HA?;)—aMsl ()\—)\27142+2Ai>:0,
Ao < ¢%+¢%>1},

14 A 1 A
- - Aozarctancl( — w—FQAi)

241 2A1
+Asl (u — #_)\z + 2Az‘> — aXsl <[L — ,u—)\z + 2Ai> =0,
,2A+,2A<1 (,+1)2 +,2 >1}
11— 11— 1 — 11—
I AT I A ’

FQifl

2ipw (2~ )Ax  Aaarctanc (u iy 2Ai)
={Ow] 1T - BT N
Sai w4 0 A;
7 . 7 .
+ sl (LL - ,UT + 2A2> — alsl (M — 'UT 4 2Az) =0,

(._1)2A+.2A<1 .2A+.2A>1}
7 i Z)\_’Z,u z/\ ,

=

Ai ,
2 11 2\ Maarctancl(A—,\L+2Al>
Iy :{(A,u)‘uza_Lfa_ m
QA)'\ N 9 A
sl (A= AT 4 240) — apsl (A= A=+ 24i) =0,
24 2 <u1 '2A+('+1)2A>1}M
Z” Z)\ < 721u 7 )\ ‘

Proof. The proof of Theorem is analogous to that of Theorem 3.1. [J

+

=
W
>~

Remark 4.1 If a = 0 we obtain the problem (2.1), (2.2). In case of « = 1 we have
the problem (3.1), (3.2).

The branches F¥ to FiF of the spectrum for the problem (3.1), (4.1) for several
values of « are depicted in Figures 3 and 4 in the case of a =0, b = 1.
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Figure 3: The Fucik spectrum for the problem (3.1), (4.1) for same « values
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H. CepreeBa. CuekTpst ®Pyunka A OgHOII KpaeBoil 3aJa4m C HEJIO-
KaJIbHBIM I'DaAaHUYHBIM YCJIOBUEM.

Awnnoramnus. Hamu noctpoensl crieKTpbl PydnKa J1/isi HEKOTOPOro HEJIUHEHHOIO
nuddepeHInaIbHOIO YpaBHEHHS BTOPOTro Mopsaka. Halmum crekTpbl OTInYaoTcs OT
N3BECTHBIX.

VIIK 517.51 + 517.91

N.Sergejeva. Fucika spektri robeZproblemai ar nelokalo nosacijumu.
Anotacija. Mes konstruejam Fuéika spektrus kadam nelinearam otras kartas
diferencialvienadojumam. Musu spektri atskiras no zinamiem.
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