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Nonlinear spectra for two-parameter eigenvalue
problems

A. Gritsans, F. Sadyrbaev

Summary. Eigenvalue problems of the form x′′ = −λf(x) + µg(x), (i), x(0) =
0, x(1) = 0, (ii) are considered. We are looking for (λ, µ) such that the problem
(i), (ii) has a nontrivial solution. This problem generalizes the famous Fučik problem
for piece-wise linear equations. In order to show that nonlinear Fučik spectra may differ
essentially from the classical ones, we consider functions f(x) and g(x) such that they are
piece-wise linear and the first zero functions t1 and τ1 can be computed explicitly. Then
it is possible to construct explicitly the respective Fučik like spectra.

MSC: 34B15
Keywords: nonlinear spectra, jumping nonlinearity, asymptotically asymmetric non-

linearities, Fuchik spectrum.

1 Introduction

In this paper we consider boundary value problems of the form

x′′ = −λf(x) + µg(x), (1)

x(0) = 0, x(1) = 0, (2)

where λ and µ are non-negative parameters and f and g are continuous (piece-wise linear)
functions such that f(x) > 0 for x > 0 and f = 0 for x < 0 and, respectively, g(x) > 0
for x < 0 and g = 0 for x > 0. This problem can be written in a usual form

x′′ =
{ −λf(x), if x ≥ 0

µg(x), if x < 0.
(3)

Any nontrivial solution x(t) of equation (1) (or, which is the same, of (3)) satisfies the
condition x(t)x′′(t) ≤ 0 for any t. Therefore behavior of solutions is rather oscillatory.

In this research we continue the study of nonlinear Fučik type spectra, which was
initiated in [8]. At the very beginning of the story stands the famous Fučik equation

x′′ = −λx+ + µx−, (4)

where x+ = max{x, 0}, x− = max{−x, 0}.
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This equation may be written also as

x′′ =
{ −λx, if x ≥ 0
−µx, if x < 0.

(5)

Equation (4) contains a piece-wise linear function in the right side which possesses
some important properties of the linear functions. For example, the positive homogeneity
property holds, that is F (αx) = αF (x), α > 0, where F (x) stands for the right side in
(4). Formally equation (4) is nonlinear and the additivity property fails to hold, that is
the sum of two solutions x1(t) and x2(t) of (4) need not to be a solution. It was the idea
of Fuchik [1] to modify a linear equation in this way and to consider nonlinear (“almost”
linear) equations of the form (4).

The Fuchik spectrum for the problem (4), (2) is defined as a set of all pairs (λ, µ), for
which the problem has a nontrivial solution. This spectrum is well known ([5, § 35 ]) and
is depicted in Fig. 2.

The Fučik spectrum was intensively studied after the pioneering works by Fučik for
various equations and boundary conditions (some references can be found in [3]).

It is to be mentioned that these studies are useful when investigating the so called
asymptotically asymmetric nonlinearities, jumping nonlinearities and even practical prob-
lems in engineering. For the whole story one may consider references in [8]. The goal of
this paper is very moderate.

We recall first the result about Fučik type spectra for equations of the type (1). Then
we consider piece-wise linear functions f and g and investigate the first zero functions.
The explicit formulas for the first zeros functions are obtained and the respective Fučik
type spectra are constructed.

Discussion on differences comparing with the classical Fučik spectra follows.

2 One parameter problems

Let us recall some facts about the nonlinear eigenvalue problem

x′′ = −λf(x), x(0) = 0, x(1) = 0. (6)

One has to consider problems of this type when looking for positive solutions of (1), (2)
(respectively, the problem x′′ = µg(x), x(0) = 0, x(1) = 0 should be considered when
looking for negative solutions of (1), (2)).

The problem (6) was studied in numerous papers, see [6], [4], for instance. It is known
that any positive solution x(t) of (6) is symmetric with respect to the middle point t = 1

2
,

where the maximal value is attained.

We assume that f(x) satisfies the following condition:
(A1) A first zero t1(α) of a solution to the Cauchy problem

u′′ = −f(u), u(0) = 0, u′(0) = α (7)

exists for any α > 0.

Similar property can be assigned to g(x).



73

We assume that g(x) satisfies the condition:
(A2) A first zero τ1(β) of a solution to the Cauchy problem

v′′ = g(v), v(0) = 0, v′(0) = −β (8)

exists for any β > 0.

Simple examples of f(x) possessing the property (A1) are the functions f(x) = x3

(t1(α) decreases from +∞ to zero as α increases from zero to +∞) and f(x) = x
1
3 (t1(α)

increases from zero to +∞ as α increases from zero to +∞). This can be verified by
direct calculation.

Proposition 2.1 Suppose that f(x) satisfies the condition (A1) and t1(α) maps (0, +∞)
onto (0, +∞) continuously. Then the problem (6) has a continuous spectrum.

Proof. Fix λ > 0 and consider a solution u(t; α) of the Cauchy problem (7). This
solution has its first positive zero at t1(α). Consider a function X(t) := u(

√
λ t; α). This

function solves the equation in (6). Moreover, X(0) = 0 and X( t1(α)√
λ

) = 0. In view of

properties of the function t1(α) for fixed λ a value α0 > 0 exists such that t1(α0)√
λ

= 1. ¥
The value max[0,1] x(t) := ‖x‖ and λ relate as

‖x‖ · λ = 2
√

2 ·
∫ 1

0

dx√
1− x4

.

The problem has continuous spectrum therefore, that is, for any positive λ there exists a
unique positive solution of the problem.

Similarly the problem

x′′ = µg(x), x(0) = 0, x(1) = 0, x(t) < 0 in (0, 1) (9)

also has continuous spectrum.
A solution of the problem (6) under the condition (A1) (and (9) under the condition

(A2)) is unique, however, if the normalization condition x′(0) = 1 (resp.: x′(0) = −1) is
imposed.

3 Basic formulas

Consider

x′′ =
{ −λf(x), if x ≥ 0

µg(x), if x < 0,
x(0) = x(1) = 0, (10)

where f(x) and g(x) are positive valued continuous functions described in Introduction.
Suppose that f and g satisfy the conditions (A1) and (A2) respectively.

It can be shown easily that this problem has continuous spectrum ([8]).
One is led thus to the conclusion that in order to have reasonable nonlinear eigenvalue

problems solutions under some normalization should be considered.
Consider

x′′ =
{ −λf(x), if x ≥ 0

µg(x), if x < 0,
x(0) = x(1) = 0, |x′(0)| = 1. (11)

Let us recall the main result in [8].
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Theorem 3.1 Let the conditions (A1) and (A2) hold with the functions t1(γ) and τ1(δ).
The Fuchik spectrum for the problem (11) is given by the relations (i = 1, 2, . . .):

F+
0 =

{(
λ, µ

)
: λ is a solution of

1√
λ

t1

( 1√
λ

)
= 1, µ ≥ 0

}
, (12)

F−
0 =

{(
λ, µ

)
: λ ≥ 0, µ is a solution of

1√
µ

τ1

( 1√
µ

)
= 1

}
, (13)

F+
2i−1 =

{
(λ; µ) : i

1√
λ

t1

( 1√
λ

)
+ i

1√
µ

τ1

( 1√
µ

)
= 1

}
, (14)

F−
2i−1 =

{
(λ; µ) : i

1√
µ

τ1

( 1√
µ

)
+ i

1√
λ

t1

( 1√
λ

)
= 1

}
, (15)

F+
2i =

{
(λ; µ) : (i + 1)

1√
λ

t1

( 1√
λ

)
+ i

1√
µ

τ1

( 1√
µ

)
= 1

}
, (16)

F−
2i =

{
(λ; µ) : (i + 1)

1√
µ

τ1

( 1√
µ

)
+ i

1√
λ

t1

( 1√
λ

)
= 1

}
. (17)

4 Piece-wise linear functions f and g. Definitions

Let
0 < a1 < a2 < a3, b1 > b2 > 0, b3 > b2.

Consider a piece-wise linear function:

f(x) =





f1(x), 0 ≤ x ≤ a1,
f2(x), a1 ≤ x ≤ a2,
f3(x), x ≥ a3,

(18)

f1(x) = p1x + q1, f2(x) = p2x + q2, f3(x) = p3x + q3,

f1(0) = 0, f1(a1) = f2(a1), f2(a2) = f3(a2), f3(a3) = b3.

Notice that

p1 =
b1

a1

, q1 = 0,

p2 =
b2 − b1

a2 − a1

, q2 =
b1a2 − a1b2

a2 − a1

,

p3 =
b3 − b2

a3 − a2

, q3 =
b2a3 − a2b3

a3 − a2

.

4.1 The first zero functions t1 and τ1. Formulas

Consider the initial value problem

x′′ = −λf(x), x(0) = 0, x′(0) = α > 0. (19)
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Let x(t) stand for a solution of the problem (19) for λ = 1. Then the first positive
zero of the x(t) is given by

t1(α) =

xα∫

0

2ds√
α2 − 2F (s)

, (20)

where F (x) =
x∫
0

f(s)ds, but xα ir the unique positive zero of the equation α2−2F (x) = 0.

One has by direct calculations that

1. if 0 ≤ α ≤
√

2F (a1), then

t1(α) = π

√
a1

b1

,

2. if
√

2F (a1) ≤ α ≤
√

2F (a2), then

t1(α) = 2

√
a1

b1

arcsin

√
a1b1

α
+

√
a2 − a1

b1 − b2

ln
D2(α)(

−2b1 + 2
√

b1−b2
a2−a1

√
α2 − a1b1

)2 ,

3. if α ≥
√

2F2(a2), then

t1(α) = 2

√
a1

b1

arcsin

√
a1b1

α
+

√
a3 − a2

b3 − b2

[
π − 2 arcsin

2b2√
D3(α)

]
+

+ 2

√
a2 − a1

b1 − b2

ln

∣∣∣∣∣∣
−b2 +

√
b1−b2
a2−a1

√
α2 − a1b1 − (a2 − a1)(b1 + b2)

−b1 +
√

b1−b2
a2−a1

√
α2 − a1b1

∣∣∣∣∣∣
,

where

D2(α) = 4
b1 − b2

a1 − a2

α2 + 4b1
a1b2 − a2b1

a1 − a2

,

D3(α) = 4
b2 − b3

a2 − a3

α2 + 4
−a2b1b2 + a1b

2
2 + a3b

2
2 + a2b1b3 − a1b2b3 + a2b2b3

a2 − a3

.

Remark 4.1. The first zero function is asymptotically linear:

lim
α→+∞

t1(α) =

√
a3 − a2

b3 − b2

π.

Details of calculations can be found in Appendix.

5 The Fučik type spectra

We introduce new variables γ = 1√
λ
, δ = 1√

µ
. The advantage is that all the branches of

the spectra but two are located in a bounded domain of the (γ, δ)-plane. One has that
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• branches which describe solutions of the problem (4), (2) with at least one zero in
(0, 1) transform to open intervals in the (γ, δ)-plane;

• the branch which describes a non-vanishing negative valued in (0, 1) solution of the
problem (4), (2) is a horizontal ray with attached point at infinity

(∞, 1
π

)
(this point

is an image of the point (0, π2) in the (λ, µ)-plane);

• the branch which describes a non-vanishing positive valued in (0, 1) solution of the
problem (4), (2) is a vertical ray with attached point at infinity

(
1
π
,∞)

(this point
is an image of the point (π2, 0) in the (λ, µ)-plane).
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Figure 1: Fučik spectrum in the
(γ, δ)-plane.
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Figure 2: Fučik spectrum in the
(λ, µ)-plane.

Theorem 3.1 in new variables takes the form:

Theorem 5.1 Let the conditions (A1) and (A2) hold with the functions t1(γ) and τ1(δ).
The Fuchik spectrum for the problem (11) in the plane (γ, δ) is given by the relations
(i = 1, 2, . . .):

F+
0 =

{
(γ, δ) : γ is a solution of γ t1(γ) = 1, δ > 0

}∪ (21)

∪ {
(γ,∞) : γ is a solution of γ t1(γ) = 1

}
,

F−
0 =

{
(γ, δ) : γ > 0, δ is a solution of δ τ1(δ) = 1

}∪ (22)

∪ {
(∞, δ) : δ is a solution of δ τ1(δ) = 1

}
,

F+
2i−1 =

{
(γ; δ) : iγ t1(γ) + iδ τ1(δ) = 1, γ > 0, δ > 0

}
, (23)

F−
2i−1 =

{
(γ; δ) : iδ τ1(δ) + iγ t1(γ) = 1, γ > 0, δ > 0

}
, (24)

F+
2i =

{
(γ; δ) : (i + 1)γ t1(γ) + iδ τ1(δ) = 1, γ > 0, δ > 0

}
, (25)

F−
2i =

{
(γ; δ) : (i + 1)δ τ1(δ) + iγ t1(γ) = 1, γ > 0, δ > 0

}
. (26)

Consider now the problem (11) with g(x) = f(−x), x < 0. Then τ1 = t1.
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Three examples follow for various piece-wise linear functions f(x), where the numbers
of roots of the equation γ t1(γ) = 1 are different.

5.1 First example

Let parameters of the piece-wise linear function f(x) in (18) be

a1 =
1

500
, a2 = 2, a3 = 5,

b1 = 200, b2 =
1

10
, b3 = 1800.
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Figure 3: The graph of y = f(x).
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Figure 4: Graphs of y = γt1(γ) and y = 1.
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Figure 5: Fučik type spectrum in the
(γ, δ)-plane.
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Figure 6: Fučik type spectrum in the
(λ, µ)-plane.

Since the function y = γt1(γ) is monotone beneath the line y = 1 as is seen in Fig. 4,
equation

γt1(γ) + δτ1(δ) = 1 (27)
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define monotone curves in the (γ, δ)-plane and branches of the spectrum look like those
of the classical Fučik spectrum.

5.2 Second example

Let parameters of the piece-wise linear function f(x) in (18) be

a1 = 0.1, a2 = 0.3, a3 = 0.31,

b1 = 9, b2 = 0.5, b3 = 150.
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Figure 7: The graph of y = f(x).
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Figure 8: Graphs of y = γt1(γ) and y = 1.

Function γt1(γ) is nonmonotone under the line y = 1. Then a set of solutions of
equation (27) may be decomposed in several components and behavior of branches of the
spectrum may be relatively complicated.

2.5 5 7.5 10 12.5 15
Γ

2.5

5

7.5

10

12.5

15

∆

Figure 9: The branch F+
0 in the

(γ, δ)-plane.
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Figure 10: The branch F+
0 in the

(λ, µ)-plane.

The branch F+
0 consists of three vertical lines which corresponds to three solutions of

the equation 1√
λ
t1(

1√
λ
) = 1.
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Figure 11: The branch F−
0 in the

(γ, δ)-plane.

2 4 6 8
Λ

2

4

6

8

Μ

Figure 12: The branch F−
0 in the

(λ, µ)-plane.

The same is true with respect to the branch F−
0 . It consists of horizontal lines which

correspond to solutions of the equation 1√
µ
τ1(

1√
µ
) = 1.
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Figure 13: The branch F+
1 = F−

1 in the
(γ, δ)-plane.
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Figure 14: The branch F+
1 = F−

1 in the
(λ, µ)-plane.

A set of solutions of equation (27) consists of exactly three components due to non-
monotonicity of the functions 1√

λ
t1(

1√
λ
) and 1√

µ
τ1(

1√
µ
). Properties of the branches F±

1
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depend on solutions of the equation

1√
λ

t1(
1√
λ

) +
1√
µ

τ1(
1√
µ

) = 1.

Respectively, properties of the branches F±
1 depend on solutions of the equation

γt1(γ) + δτ1(δ) = 1.
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Figure 15: The branch F+
2 in the

(γ, δ)-plane.
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Figure 16: The branch F+
2 in the

(λ, µ)-plane.
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Figure 17: The branch F−
2 in the

(γ, δ)-plane.
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Figure 18: The branch F−
2 in the

(λ, µ)-plane.
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Branches F±
2 look a little bit different since now their properties depend on a set of

solutions of equations

2
1√
λ

t1(
1√
λ

) +
1√
µ

τ1(
1√
µ

) = 1

and
1√
λ

t1(
1√
λ

) + 2
1√
µ

τ1(
1√
µ

) = 1.

Respectively, properties of the branches F±
2 depend on solutions of equations

2γt1(γ) + δτ1(δ) = 1

and
γt1(γ) + 2δτ1(δ) = 1.
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Figure 19: The branch F+
3 = F−

3 in the
(γ, δ)-plane.
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Figure 20: The branch F+
3 = F−

3 in the
(λ, µ)-plane.
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Figure 21: The branch F+
4 in the

(γ, δ)-plane.
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Figure 22: The branch F+
4 in the

(λ, µ)-plane.
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Figure 23: The branch F−
4 in the

(γ, δ)-plane.
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Figure 24: The branch F−
4 in the

(λ, µ)-plane.
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Figure 25: The branch F+
5 = F−

5 in the
(γ, δ)-plane.
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Figure 26: The branch F+
5 = F−

5 in the
(λ, µ)-plane.

6 Discussion

• Fučik type spectra make sense for nonlinear functions f and g if the normalization
condition |x′(0)| = 1 is imposed;

• The character of new Fučik type spectra essentially depend on properties of the first
zero functions t1 and τ1;

• Some properties of the Fučik type spectra are better seen in a (γ, δ)-plane;

• Odd-numbered branches F+
2i−1 and F−

2i−1 still coincide;

• Even-numbered branches F+
2i and F−

2i generally differ;

• If functions u(γ) = γt1(γ) and v(δ) = δτ1(δ) are monotone then the respective Fučik
type spectra are similar to the classical Fučik spectrum;

• If functions u(γ) = γt1(γ) and/or v(δ) = δτ1(δ) are not monotone then some
branches of the respective Fučik type spectra may consist of multiple separate com-
ponents, this feature is new comparing with classical spectrum;

• If functions u(γ) = γt1(γ) and v(δ) = δτ1(δ) both are monotone in some vicinity
of zero then branches F±

k of a Fučik type spectrum are one-component for large
enough values of k;

• If functions u(γ) and/or v(δ) oscillate in some vicinity of zero then behavior of
branches F±

k of a Fučik type spectrum may be complicated (one might think about
construction of example);
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• If f(x) = g(−x) for x > 0 then branches (components) of a respective Fučik type
spectrum are symmetric with respect to the bisectrix λ = µ or γ = δ.

7 Appendix

Let the numbers ai, bj be such that

0 < a1 < a2 < a3, b1 > b2 > 0, b3 > b2.

Consider a piece-wise linear function f : [0; +∞) → [0; +∞), which passes through
the origin :

f(x) =





f1(x), 0 ≤ x ≤ a1,
f2(x), a1 ≤ x ≤ a2,
f3(x), x ≥ a3,

f1(x) = p1x + q1, f2(x) = p2x + q2, f3(x) = p3x + q3,

f1(0) = 0, f1(a1) = f2(a1), f2(a2) = f3(a2), f3(a3) = b3.

Notice that

p1 =
b1

a1

, q1 = 0,

p2 =
b2 − b1

a2 − a1

, q2 =
b1a2 − a1b2

a2 − a1

,

p3 =
b3 − b2

a3 − a2

, q3 =
b2a3 − a2b3

a3 − a2

.

Our intent is to investigate the first zero function t1(α) of a solution x(t; α) of the
Cauchy problem

x′′ = −f(x), (28)

x(0) = 0, x′(0) = α > 0. (29)

This function is given by

t1(α) =

xα∫

0

2ds√
α2 − 2F (s)

, (30)

where

F (x) =

x∫

0

f(s)ds,

and xα is the only positive zero of the equation

α2 − 2F (x) = 0.

The primitive F can be represented as
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F (x) =





F1(x) :=
x∫
0

f1(s)ds, 0 ≤ x ≤ a1,

F2(x) :=
a1∫
0

f1(s)ds +
x∫

a1

f2(s)ds, a1 ≤ x ≤ a2,

F3(x) :=
a1∫
0

f1(s)ds +
a2∫
a1

f2(s)ds +
x∫

a2

f3(s)ds, x ≥ a3,

7.1 First step

Suppose that
0 ≤ α2 ≤ 2F (a1) or 0 ≤ α ≤

√
2F (a1).

Since

F1(x) =
b1

2a1

x2,

then the only positive root of the equation

α2 − 2F1(x) = 0 or α2 − b1

a1

x2 = 0

is given by

xα =

√
a1

b1

α.

Then

J1(x) =

x∫

0

2dt√
α2 − 2F (t)

=

x∫

0

2dt√
α2 − 2F1(t)

=

x∫

0

2dt√
α2 − b1

a1
t2

=

=

x∫

0

2dt√
α2 −

(√
b1
a1

t
)2

= 2

√
a1

b1

x∫

0

d
(√

b1
a1

t
)

√
α2 −

√
b1
a1

t

= 2

√
a1

b1

arcsin

√
b1
a1

t

α

∣∣∣∣∣∣

x

0

=

= 2

√
a1

b1

arcsin

√
b1
a1

x

α
.

Therefore

t1(α) = lim
x→xα

J1(x) = 2

√
a1

b1

arcsin

√
b1
a1

xα

α
= 2

√
a1

b1

arcsin

√
b1
a1

√
a1

b1
α

α
=

= 2

√
a1

b1

arcsin 1 = 2

√
a1

b1

π

2
= π

√
a1

b1

and

t1(α) = π

√
a1

b1

, 0 ≤ α ≤
√

2F (a1)
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7.2 Second step

Suppose that

2F (a1) ≤ α2 ≤ 2F (a2) jeb
√

2F (a1) ≤ α ≤
√

2F (a2).

Consider

J2(x) =

x∫

0

2dt√
α2 − 2F (t)

=

a1∫

0

2dt√
α2 − 2F (t)

+

x∫

a1

2dt√
α2 − 2F (t)

=

=

a1∫

0

2dt√
α2 − 2F1(t)

+

x∫

a1

2dt√
α2 − 2F2(t)

= J1(a1) + J22(x),

where

J1(a1) =

a1∫

0

2dt√
α2 − 2F1(t)

= 2

√
a1

b1

arcsin

√
b1
a1

a1

α
= 2

√
a1

b1

arcsin

√
a1b1

α
,

J22(x) =

x∫

a1

2dt√
α2 − 2F2(t)

.

Notice that
G2(t) := α2 − 2F2(t) = r2t

2 + s2t + t2(α),

where

r2 = − b2 − b1

a2 − a1

= −p2 > 0,

s2 =
2(a2b1 − a1b2)

a1 − a2

= −2q2

= −2f2(0) < 0,

t2 = α2 − a1b1 +
a2

1b1 − 2a1a2b1 + a2
1b2

a1 − a2

.

Equation
α2 − 2F (t) = 0

has the only positive root xα for any α > 0 since the function F (t) is monotonically
increasing in the interval [0; +∞), F (0) = 0.

If 2F (a1) ≤ α2 ≤ 2F (a2), then

α2 − 2F (t) = α2 − 2F2(t) = α2 − 2F2(t) = r2t
2 + s2t + t2(α) = G2(t)
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is quadratic polynomial. This means that xα coincide to one of the quadratic polynomial’s
root, and

a1 ≤ xα ≤ a2.

The discriminant of the quadratic polynomial G2(t) is

D2(α) = s2
2 − 4r2t2 ≥ 0, 2F (a1) ≤ α2 ≤ 2F (a2).

Notice that
D2(α) 6= 0.

I Suppose the contrary is true, that is, there exists α0 ∈
[√

2F (a1),
√

2F (a2)
]

such

that D2(α0) = 0. Then

xα0 =
−s2

2r2

=
2q2

−2p2

= −q2

p2

.

One has that

a2 − xα0 = a2 +
q2

p2

=
p2a2 + q2

p2

=
f2(a2)

p2

< 0,

since f2(a2) > 0, bet p2 < 0. Thus xα0 > a2, and this is in contradiction with xα0 ≤ a2.J

Moreover,

xα =
−s2 −

√
D2(α)

2r2

.

Notice that if a > 0 un D = b2 − 4ac ≥ 0, then

ax2 + bx + c =

(√
ax +

b

2
√

a

)2

− D

4a
.

One finds taking this into account that

∫
2dt√

ax2 + bx + c
=

∫
2dt√(√

ax + b
2
√

a

)2

− D
4a

=
2√
a

∫ d
(√

ax + b
2
√

a

)
√(√

ax + b
2
√

a

)2

− D
4a

=

=
2√
a

ln

∣∣∣∣
√

ax +
b

2
√

a
+
√

ax2 + bx + c

∣∣∣∣+C =
2√
a

ln
∣∣∣2ax + b + 2

√
a
√

ax2 + bx + c
∣∣∣+C1.

Hence

J22(x) =

x∫

a1

2dt√
α2 − 2F2(t)

=

x∫

a1

2dt√
r2t2 + s2t + t2(α)

=

=
2√
r2

ln
∣∣∣2r2t + s2 + 2

√
r2

√
r2t2 + s2t + t2(α)

∣∣∣
∣∣∣∣
x

a1

=

=
2√
r2

[
ln

∣∣∣2r2x + s2 + 2
√

r2

√
r2x2 + s2x + t2(α)

∣∣∣− ln

∣∣∣∣2r2a1 + s2 + 2
√

r2

√
r2a2

1 + s2a1 + t2(α)

∣∣∣∣
]

=

=
2√
r2

[
ln

∣∣∣2r2x + s2 + 2
√

r2

√
α2 − 2F2(x)

∣∣∣− ln
∣∣∣2r2a1 + s2 + 2

√
r2

√
α2 − 2F2(a1)

∣∣∣
]
.
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It is of interest to note that

r2a
2
1 + s2a1 + t2(α) = α2 − 2F2(a1) = α2 − 2F1(a1) = α2 − a1b1.

Therefore

t1(α) = lim
x→xα

J2(x) = J1(a1) + lim
x→xα

J22(x) =

=

∣∣∣∣∣∣
α2 − 2F2(xα) = r2x

2
α + s2xα + t2(α) = 0

∣∣∣∣∣∣
=

= J1(a1) +
2√
r2

[
ln |2r2xα + s2| − ln

∣∣∣2r2a1 + s2 + 2
√

r2

√
α2 − a1b1

∣∣∣
]

=

=

∣∣∣∣∣∣∣
2r2xα + s2 = 2r2

−s2−
√

D2(α)

2r2
+ s2 = −

√
D2(α)

∣∣∣∣∣∣∣
=

= J1(a1) +
2√
r2

[
ln

∣∣∣−
√

D2(α)
∣∣∣− ln

∣∣∣2r2a1 + s2 + 2
√

r2

√
α2 − a1b1

∣∣∣
]

=

= J1(a1) +
2√
r2

[
ln

√
D2(α)− ln

∣∣∣2r2a1 + s2 + 2
√

r2

√
α2 − a1b1

∣∣∣
]

=

= J1(a1) +
1√
r2

[
ln D2(α)− 2 ln

∣∣∣2r2a1 + s2 + 2
√

r2

√
α2 − a1b1

∣∣∣
]

=

= J1(a1) +
1√
r2

[
ln D2(α)− ln

(
2r2a1 + s2 + 2

√
r2

√
α2 − a1b1

)2
]

.

Notice that
2r2a1 + s2 = −2(p2a1 + q2) = −2f2(a1) = −2b1.

Therefore

√
2F (a1) ≤ α ≤

√
2F (a2),

t1(α) = 2

√
a1

b1

arcsin

√
a1b1

α
+

1
√

r2

ln
D2(α)

(−2b1 + 2
√

r2

√
α2 − a1b1

)2 .

This can be written also as

√
2F (a1) ≤ α ≤

√
2F (a2),

t1(α) = 2

√
a1

b1

arcsin

√
a1b1

α
+

+
2

√
r2

[
ln

∣∣∣2r2xα + s2 + 2
√

r2

√
α2 − 2F2(xα)

∣∣∣ − ln
∣∣∣2r2a1 + s2 + 2

√
r2

√
α2 − 2F2(a1)

∣∣∣
]
.
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7.3 Third step

Suppose that
α2 ≥ 2F (a2) or α ≥

√
2F (a2).

Consider

J3(x) =

x∫

0

2dt√
α2 − 2F (t)

=

a1∫

0

2dt√
α2 − 2F (t)

+

a2∫

a1

2dt√
α2 − 2F (t)

+

x∫

a2

2dt√
α2 − 2F (t)

=

a1∫

0

2dt√
α2 − 2F1(t)

+

a2∫

a1

2dt√
α2 − 2F2(t)

+

x∫

a2

2dt√
α2 − 2F3(t)

=

= J1(a1) + J22(a2) + J33(x),

where

J1(a1) =

a1∫

0

2dt√
α2 − 2F1(t)

= 2

√
a1

b1

arcsin

√
b1
a1

a1

α
= 2

√
a1

b1

arcsin

√
a1b1

α
,

J22(a2) =

a2∫

a1

2dt√
α2 − 2F2(t)

=

=
2√
r2

[
ln

∣∣∣2r2a2 + s2 + 2
√

r2

√
α2 − 2F2(a2)

∣∣∣− ln
∣∣∣2r2a1 + s2 + 2

√
r2

√
α2 − 2F2(a1)

∣∣∣
]
,

J33(x) =

x∫

a2

2dt√
α2 − 2F3(t)

.

Notice that
2r2a2 + s2 = −2(p2a2 + q2) = −2f2(a2) < 0.

Consider
G3(t) := α2 − 2F3(t) = r3t

2 + s3t + t3(α),

where

r3 = − b3 − b2

a3 − a2

= −p3 < 0,

s3 =
2(a3b2 − a2b3)

a2 − a3

= −2q3

= −2f3(0),

t3 = α2 − a2b1 + a1b2 − a2b2 +
a2

2b2 − 2a2a3b2 + a2
2b3

a2 − a3

= α2 + const.
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Since F (t) is strictly monotonic in [0; +∞), F (0) = 0, there exists a unique solution
xα of the equation

α2 − 2F (t) = 0

for any α > 0.
If α2 ≥ 2F (a2), then

α2 − 2F (t) = α2 − 2F3(t) = α2 − 2F3(t) = r3t
2 + s3t + t3(α) = G3(t)

is a quadratic polynomial. This means that xα coincide with one of the roots of the
quadratic polynomial and

xα ≥ a2.

The discriminant G3(t) of the quadratic polynomial is

D3(α) = s2
3 − 4r3t3 ≥ 0, α2 ≥ 2F (a2).

Notice that
D3(α) 6= 0.

I Suppose the contrary is true. Then there exists α0 ∈
[√

2F (a3), +∞
]

such that

D3(α0) = 0. Then

xα0 =
−s3

2r3

=
−(2q3)

−2p2

= −q3

p3

.

One finds that

xα0 − a2 = −q3

p3

− a2 = −p3a2 + q3

p3

= −f3(a2)

p3

< 0,

since f2(a3) > 0, p3 > 0. Therefore xα0 < a2, and this is in contradiction with xα0 ≥ a2.J

Moreover

xα =
−s3 −

√
D3(α)

2r3

.

Notice that if a < 0 and D = b2 − 4ac ≥ 0, then

ax2 + bx + c = a

(
x +

b

2a

)2

− D

4a

= −|a|
(

x +
b

2a

)2

− D

−4|a|

=
D

4|a| − |a|
(

x +
b

2a

)2

= |a|
[

D

4|a|2 −
(

x +
b

2a

)2
]

= |a|



(√
D

2|a|

)2

−
(

x +
b

2a

)2

 .
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It follows from the above relation that

∫
2dx√

ax2 + bx + c
=

∫
2dx√

|a|
[(√

D
2|a|

)2

− (
x + b

2a

)2
] =

2√
|a|

∫
d

(
x + b

2a

)
√(√

D
2|a|

)2

− (
x + b

2a

)2

=

=
2√
|a| arcsin

x + b
2a√

D
2|a|

=
2√−a

arcsin
x + b

2a

−
√

D
2a

=
2√−a

arcsin
2ax + b

−√D
.

Then

J33(x) =

x∫

a2

2dt√
α2 − 2F3(t)

=

x∫

a3

2dt√
r3t2 + s3t + t3(α)

=
2√−r3

arcsin
2r3t + s3

−
√

D3(α)

∣∣∣∣∣

x

a2

=

2√−r3

[
arcsin

2r3x + s3

−
√

D3(α)
− arcsin

2r3a3 + s3

−
√

D3(α)

]
.

Therefore

t1(α) = lim
x→xα

J3(x) = J1(a1) + J22(a2) + lim
x→xα

J33(x) = 2

√
a1

b1

arcsin

√
a1b1

α
+

+
2√
r2

[
ln

∣∣∣2r2a2 + s2 + 2
√

r2

√
α2 − 2F2(a2)

∣∣∣− ln
∣∣∣2r2a1 + s2 + 2

√
r2

√
α2 − 2F2(a1)

∣∣∣
]
+

+
2√−r3

[
arcsin

2r3xα + s3

−
√

D3(α)
− arcsin

2r3a2 + s3

−
√

D3(α)

]
=

=

∣∣∣∣∣∣∣∣
2r3xα+s3

−
√

D3(α)
=

2r3
−s3−

√
D3(α)

2r3
+s3

−
√

D3(α)
= 1

∣∣∣∣∣∣∣∣
=

= 2

√
a1

b1

arcsin

√
a1b1

α
+

π√−r3

− 2√−r3

arcsin
2r3a2 + s3

−
√

D3(α)
+

+
2√
r2

[
ln

∣∣∣2r2a2 + s2 + 2
√

r2

√
α2 − 2F2(a2)

∣∣∣− ln
∣∣∣2r2a1 + s2 + 2

√
r2

√
α2 − 2F2(a1)

∣∣∣
]
.

Notice that

r2 = −p2 = − b2 − b1

a2 − a1

=
b1 − b2

a2 − a1

;

−r3 = −(−p3) = p3 =
b3 − b2

a3 − a2

;

2r2a1 + s2 = 2(−p2)a1 + (−2q2) = −2(p2a1 + q2) = −2f2(a1) = −2b1;

2r2a2 + s2 = 2(−p2)a2 + (−2q2) = −2(p2a2 + q2) = −2f2(a2) = −2b2;

2r3a2 + s3 = 2(−p3)a2 + (−2q3) = −2(p3a2 + q3) = −2f3(a2) = −2b2;
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Thus

t1(α) = 2

√
a1

b1

arcsin

√
a1b1

α
+

√
a3 − a2

b3 − b2

[
π − 2 arcsin

2b2√
D3(α)

]
+

+ 2

√
a2 − a1

b1 − b2

ln

∣∣∣∣∣∣
−b2 +

√
b1−b2

a2−a1

√
α2 − 2F2(a2)

−b1 +
√

b1−b2

a2−a1

√
α2 − 2F2(a1)

∣∣∣∣∣∣
, α ≥

√
2F2(a2).

If α → +∞, then

2

√
a1

b1

arcsin

√
a1b1

α
→ 0.

Since

D3(α) = s2
3 − 4r3t3(α) = s2

3 − 4r3(α
2 + const) = −4r3α

2 + const,

where r3 < 0, then D3(α) → +∞, if α → +∞. Therefore

2 arcsin
2b2√
D3(α)

−−−−→
α→+∞

0.

Moreover, since

−b2 +
√

b1−b2
a2−a1

√
α2 − 2F2(a2)

−b1 +
√

b1−b2
a2−a1

√
α2 − 2F2(a1)

−−−−→
α→+∞

1,

then

ln

∣∣∣∣∣∣
b2 +

√
b1−b2
a2−a1

√
α2 − 2F2(a2)

b1 +
√

b1−b2
a2−a1

√
α2 − 2F2(a1)

∣∣∣∣∣∣
−−−−→
α→+∞

0.

Therefore

t1(α) −−−−→
α→+∞

√
a3 − a2

b3 − b2

π.
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À. Ãðèöàíñ, Ô. Ñàäûðáàåâ. Íåëèíåéíûå ñïåêòðû äâóïàðàìåòðè÷åñêèõ
çàäà÷ íà ñîáñòâåííûå çíà÷åíèÿ.

Àííîòàöèÿ. Ðàññìàòðèâàþòñÿ çàäà÷è íà ñîáñòâåííûå çíà÷åíèÿ âèäà x′′ = −λf(x)+
µg(x), (i), x(0) = 0, x(1) = 0, (ii). Èùóòñÿ çíà÷åíèÿ (λ, µ) òàêèå, ÷òî çàäà÷à
(i), (ii) èìååò íåòðèâèàëüíîå ðåøåíèå. Ýòà çàäà÷à îáîáùàåò èçâåñòíóþ çàäà÷ó Ôó÷èêà
äëÿ êóñî÷íî-ëèíåéíûõ óðàâíåíèé. Ñ öåëüþ ïîêàçàòü, ÷òî íåëèíåéíûå ñïåêòðû Ôó÷èêà
ìîãóò ñóùåñòâåííî îòëè÷àòüñÿ îò êëàññè÷åñêèõ, ìû ðàññìàòðèâàåì ôóíêöèè f(x)
è g(x) êóñî÷íî-ëèíåéíûìè, ÷òî äàåò âîçìîæíîñòü ïîëó÷èòü ÿâíûå ôîðìóëû äëÿ
ôóíêöèé ïåðâûõ íóëåé t1 è τ1. Îòñþäà ïîëó÷àþòñÿ ÿâíûå âûðàæåíèÿ äëÿ ñîîòâåò-
ñòâóþùèõ ñïåêòðîâ Ôó÷èêà.

ÓÄÊ 517.927

A. Gricāns, F. Sadirbajevs. Divu parametru ı̄pašvērt̄ıbu problēmu ne-
lineārie spektri.
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Anotācija. Tika apskat̄ıtas ı̄pašvērt̄ıbu problēmas formā x′′ = −λf(x)+µg(x), (i),
x(0) = 0, x(1) = 0, (ii). Meklējam (λ, µ) tādus, ka problēmai (i), (ii) ir netriviālie
atrisinājumi. Šis uzdevums vispārina slavenu Fučika problēmu kad f(x) = x+ un g(x) =
x−. Mēs iegūstam tiešas formulas Fučika spektriem gad̄ıjumā, kad funkcijas f(x) un g(x)
katra ir gabaliem lineāras funkcijas. Iegūtie spektri būtiski atšķiras no klasiskiem.
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