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Nonlinear spectra for two-parameter eigenvalue
problems

A. Gritsans, F. Sadyrbaev

Summary. Eigenvalue problems of the form z” = —\f(z) 4+ pug(x), (i), 2(0) =
0, (1) = 0, (i7) are considered. We are looking for (A, ) such that the problem
(1), (i7) has a nontrivial solution. This problem generalizes the famous Fucik problem
for piece-wise linear equations. In order to show that nonlinear Fucik spectra may differ
essentially from the classical ones, we consider functions f(z) and g(x) such that they are
piece-wise linear and the first zero functions t; and 7, can be computed explicitly. Then
it is possible to construct explicitly the respective Fucik like spectra.

MSC: 34B15
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1 Introduction
In this paper we consider boundary value problems of the form

2" =~ f(2) + pg(x), (1)
2(0) =0, z(1) =0, (2

)
where A and p are non-negative parameters and f and g are continuous (piece-wise linear)
functions such that f(x) > 0 for z > 0 and f = 0 for x < 0 and, respectively, g(z) > 0
for x < 0 and g = 0 for x > 0. This problem can be written in a usual form

"o —)\f(:B), it >0
* { pg(x), if = <O0. (3)

Any nontrivial solution z(t) of equation (I) (or, which is the same, of (3)) satisfies the
condition z(t)z"(t) < 0 for any ¢. Therefore behavior of solutions is rather oscillatory.

In this research we continue the study of nonlinear Fucik type spectra, which was
initiated in [8]. At the very beginning of the story stands the famous Fucik equation

" =Xzt +px, (4)

where 1 = max{z,0}, = = max{—=z,0}.
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This equation may be written also as

v =z, it x>0
v _{ —px, if x<O0. (5)

Equation (4) contains a piece-wise linear function in the right side which possesses
some important properties of the linear functions. For example, the positive homogeneity
property holds, that is F(az) = aF(z), a > 0, where F(z) stands for the right side in
(4). Formally equation (4)) is nonlinear and the additivity property fails to hold, that is
the sum of two solutions x(t) and x5(t) of (4) need not to be a solution. It was the idea
of Fuchik [1] to modify a linear equation in this way and to consider nonlinear (“almost”
linear) equations of the form (4).

The Fuchik spectrum for the problem (4), (2) is defined as a set of all pairs (A, i), for
which the problem has a nontrivial solution. This spectrum is well known ([5, § 35 ]) and
is depicted in Fig. 2.

The Fucik spectrum was intensively studied after the pioneering works by Fucik for
various equations and boundary conditions (some references can be found in [3]).

It is to be mentioned that these studies are useful when investigating the so called
asymptotically asymmetric nonlinearities, jumping nonlinearities and even practical prob-
lems in engineering. For the whole story one may consider references in [8]. The goal of
this paper is very moderate.

We recall first the result about Fucik type spectra for equations of the type (1). Then
we consider piece-wise linear functions f and ¢ and investigate the first zero functions.
The explicit formulas for the first zeros functions are obtained and the respective Fucik
type spectra are constructed.

Discussion on differences comparing with the classical Fué¢ik spectra follows.

2 One parameter problems
Let us recall some facts about the nonlinear eigenvalue problem
2" =-=\f(z), x(0)=0, z(1) =0. (6)

One has to consider problems of this type when looking for positive solutions of (1)), (2)
(respectively, the problem z” = ug(x), x(0) =0, z(1) = 0 should be considered when
looking for negative solutions of (1)), (2)).

The problem (6) was studied in numerous papers, see [6], [4], for instance. It is known
that any positive solution z(t) of (6) is symmetric with respect to the middle point ¢ = %,
where the maximal value is attained.

We assume that f(x) satisfies the following condition:
(A1) A first zero t1(«) of a solution to the Cauchy problem

u'=—f(u), u(0)=0,4(0)=a (7)

exists for any a > 0.

Similar property can be assigned to g(x).
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We assume that g(x) satisfies the condition:
(A2) A first zero 71 () of a solution to the Cauchy problem

v =g(v), ©(0)=0,v'(0)=—p (8)

exists for any 3 > 0.

Simple examples of f(x) possessing the property (A1) are the functions f(z) = z3

(t1(a) decreases from oo to zero as «v increases from zero to +00) and f(z) = 23 (t1(c)
increases from zero to 400 as « increases from zero to +00). This can be verified by
direct calculation.

Proposition 2.1 Suppose that f(z) satisfies the condition (A1) and t,(a) maps (0, +00)
onto (0,+00) continuously. Then the problem (6) has a continuous spectrum.

Proof. Fix A > 0 and consider a solution u(¢; ) of the Cauchy problem (7). This
solution has its first positive zero at t,(). Consider a function X () := u(v/At; ). This
tl(a)

function solves the equation in (6). Moreover, X(0) = 0 and X (W> = 0. In view of

properties of the function ¢;(«) for fixed A a value ay > 0 exists such that % =11
The value maxj 1) z(t) := [|z|| and A relate as

] - A =2v2 /ld—x
o V1—at

The problem has continuous spectrum therefore, that is, for any positive A there exists a
unique positive solution of the problem.

Similarly the problem
" =pg(z), x(0)=0, x(1)=0, =z(t)<0in (0,1) (9)

also has continuous spectrum.

A solution of the problem (6) under the condition (A1) (and (9) under the condition
(A2)) is unique, however, if the normalization condition 2/(0) = 1 (resp.: 2/(0) = —1) is
imposed.

3 Basic formulas

Consider (@)
—Af(x), it >0
"o ) = _ _
= { g(x), itz <0, z(0) = z(1) =0, (10)

where f(z) and g(z) are positive valued continuous functions described in Introduction.
Suppose that f and g satisfy the conditions (A1) and (A2) respectively.

It can be shown easily that this problem has continuous spectrum ([§]).

One is led thus to the conclusion that in order to have reasonable nonlinear eigenvalue
problems solutions under some normalization should be considered.

Consider

o= { MO T2 == woI=L

Let us recall the main result in [§].
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Theorem 3.1 Let the conditions (A1) and (A2) hold with the functions ti(y) and ().
The Fuchik spectrum for the problem (11) is given by the relations (i =1,2,...):

_ { 1)+ Xis a solution of %t&%) —1, u> 0}, (12)
_ { 1) A >0, s a solution of %7’1<%) - 1}, (13)
:{ S
S R R
A G TE R
Fa={oun: rnn() vigen() =1 (17

4 Piece-wise linear functions f and ¢. Definitions

Let
O<CL1<G2<CL3, b1>b2>0, b3 > bsy.

Consider a piece-wise linear function:

filz), 0<z<ay,
flx)=1q folx), a1 <z <ay, (18)
f3(x)7 X Z as,
@) =pix+q, fa(2) =px+q, [f3(r)=psz+gs,
[1(0) =0,  fila1) = falar), falaz) = fs(az), f3(as) = bs.
Notice that
b
pl = _17 ql - 07
ai
by — by biay — ayby
b2 = ) Qo= ——————
Gy — a1 a2 — a1
bz — by byas — asbs
b3 = ) g3 = ———.
as — Qg az — ag

4.1 The first zero functions ¢; and 7. Formulas

Consider the initial value problem

" =-\f(z), z(0)=0, 2'(0)=a>0. (19)
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Let x(t) stand for a solution of the problem (19) for A = 1. Then the first positive
zero of the x(t) is given by

t 2ds

o) = [ e (20)
J Va2 —2F(s)

where F'(x) = [ f(s)ds, but z, ir the unique positive zero of the equation o —2F (z) = 0.

0
One has by direct calculations that

1. if 0 < o < /2F(aq), then

ti(a) =7 Z—i,
2. if \/2F(a1) < a < /2F(ay), then
— D
ti(a) =2 % arcsin Vaiby + \/a2 N, 2(2)
1 «

_ 2
I R =Wy

3. if a > /2F5(ay), then
20,

b _
t1(a) =2 M aresin Vaiby NI e B
b a bs — be Ds(a)

ag —a;. |2t/ —2;:1;21 Va2 —apby — (az — ay)(by + bo)
+2 In
by — by

—b1 + \/ %\/ 042 — a1b1

T — 2 arcsin +

Y

where
by —b by — ash
Dy(a) = g2 2 + 4b, 1092 — d201
ay — az a; — Ao
Dy(a) = 4 by — b o244 —agbiby + aybs + azb3 + asbibs — aibabs + a2b2b3.
ag — asg as — as

Remark 4.1. The first zero function is asymptotically linear:

. a3 — a2
1 t =/ T.

Details of calculations can be found in Appendix.

5 The Fucik type spectra

We introduce new variables 7 = \%\, 0= \/Lﬁ The advantage is that all the branches of
the spectra but two are located in a bounded domain of the (v, d)-plane. One has that
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e branches which describe solutions of the problem (4), (2) with at least one zero in
(0,1) transform to open intervals in the (v, §)-plane;

e the branch which describes a non-vanishing negative valued in (0, 1) solution of the
problem (4), (2) is a horizontal ray with attached point at infinity (oo, L) (this point
is an image of the point (0, 72) in the (A, u)-plane);

e the branch which describes a non-vanishing positive valued in (0, 1) solution of the
problem (4), (2) is a vertical ray with attached point at infinity (1, 00) (this point
is an image of the point (72,0) in the (A, p)-plane).
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Figure 1: Fucik spectrum in the Figure 2: Fucik spectrum in the
(7, §)-plane. (A, p)-plane.

Theorem 3.1/ in new variables takes the form:

Theorem 5.1 Let the conditions (A1) and (A2) hold with the functions t1(7y) and T (9).
The Fuchik spectrum for the problem (11) in the plane (v,0) is given by the relations

(i=1,2,...):

Fi ={(,0) : vis a solution of vt:(y) =1, &> 0}U (21)
U{(7,00) : 7 is a solution of vt;(v) =1},
Fo ={(v,0) 17 >0, §is a solution of §71(5) =1}U (22)

U {(00,6) : & is a solution of §7(8) =1},
Foia={(:0): ivti(y) +idm(5) =1, v >0, § >0},
Foia=A{(50): i6n(6)+ivti(y) =1, v >0, 6§ >0},
Fri={(:0): (i+1)yta(y) +idn(d) =1, v>0, >0},
Foo={(:6): (i+1)m(0) +ivtr(y) =1, v >0, § >0}.
Consider now the problem (11) with g(z) = f(—x), x < 0. Then 7, = ¢;.
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Three examples follow for various piece-wise linear functions f(x), where the numbers
of roots of the equation ~yt;(y) = 1 are different.

5.1 First example

Let parameters of the piece-wise linear function f(z) in (18) be

1
alZ@, as =2, as =9,
1
by = 200 by = — bs = 1800.
1 y 2 107 3
f (x)
Yy ti(y), 1
200 25
150 20
15
100
10
50 5
o5 i s 2 25 20 40 60 80 1007
Figure 3: The graph of y = f(x). Figure 4: Graphs of y = vt1(y) and y = 1.

0.08

0. 04

0. 02

Figure 5: Fucik type spectrum in the Figure 6: Fucik type spectrum in the
(v, 9)-plane. (A, p)-plane.

Since the function y = ~vt;(7) is monotone beneath the line y = 1 as is seen in Fig. 4]
equation

() +07(0) =1 (27)
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define monotone curves in the (v, d)-plane and branches of the spectrum look like those
of the classical Fuc¢ik spectrum.

5.2 Second example

Let parameters of the piece-wise linear function f(z) in (18) be

ap = 0]_, ag = 03, as = 031,
b1 - 9, b2 - 05, b3 = 150.
f(x) i (y), 1
40 2
35 1.75
30 1.5
25 1.25
20 1
15 0.75 M
10 0.5
5 0.25
0.05 0.1 0.15 0.2 0.25 0.3 X 2.5 5 7.5 10 12.5 15 17.5 '
Figure 7: The graph of y = f(z). Figure 8: Graphs of y = vt;() and y = 1.
Function ~yt;(7y) is nonmonotone under the line y = 1. Then a set of solutions of

equation (27) may be decomposed in several components and behavior of branches of the
spectrum may be relatively complicated.

s [y
15 8
12.5
6
10
7.5 4
5
2
2.5
N L
¥
2.5 5 7.5 10 12.5 15 5 7 3 8
Figure 9: The branch F; in the Figure 10: The branch F, in the
(7, 6)-plane. (A, p)-plane.

The branch F," consists of three vertical lines which corresponds to three solutions of
the equation %tl(%) =1
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N §
2.5 5 7.5 10 12.5 15 > 7 5 5 A
Figure 11: The branch F; in the Figure 12: The branch F| in the
(7, 6)-plane. (A, p)-plane.

The same is true with respect to the branch Fj . It consists of horizontal lines which

correspond to solutions of the equation \/ﬁﬁ( \F> =1
s H
15 8
12.5
6
10
7.5 4
5
2
2.5
26 5 7.5 10 12.5 15 = A

2 4 6 8

Figure 13: The branch F,” = F in the Figure 14: The branch F;" = F| in the
(7, 6)-plane. (A, p)-plane.

A set of solutions of equation (27) consists of exactly three components due to non-

monotonicity of the functions /\t ( 1)\) and \/—ﬂ7'1< f) Properties of the branches F:
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depend on solutions of the equation

RIS
VAUV VR

Respectively, properties of the branches fli depend on solutions of the equation

) =1

U

15 8
12.5

10

7.5

2.5
25 5 7.5 10 12.5 15 ' A
Figure 15: The branch ;" in the Figure 16: The branch F, in the
(7, 6)-plane. (A, p)-plane.
5 H
15 8
12.5
6
10
7.5 4
5
2
2.5 L
Y
25 5 7.5 10 12.5 15 5 a 6 8 A

Figure 17: The branch F, in the Figure 18: The branch F), in the
(7, d)-plane. (A, p)-plane.
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Branches F§t look a little bit different since now their properties depend on a set of
solutions of equations

1 1 1 1
2R =
and
1 1 1 1

Respectively, properties of the branches F;ﬁ depend on solutions of equations

29yt (7) + 07 (0) = 1

and
vt (y) + 2671 (9) = 1.
5 H
12.5
6
10
7.5 4
5
2
2.5 L
25 5 7.5 10 12.5 15 ! 5

4 6 8

Figure 19: The branch F;" = F; in the Figure 20: The branch F;" = F; in the
(7, d)-plane. (A, p)-plane.
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Figure 21: The branch F, in the
(7, 6)-plane.
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Figure 23: The branch F, in the
(7, 6)-plane.

Figure 22: The branch F;™ in the
(A, p)-plane.

Figure 24: The branch F, in the
(A, p)-plane.
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Figure 25: The branch F; = F; in the Figure 26: The branch Fy" = F; in the
(7, 6)-plane. (A, p)-plane.

Discussion

Fucik type spectra make sense for nonlinear functions f and g if the normalization
condition |2/(0)| = 1 is imposed;

The character of new Fucik type spectra essentially depend on properties of the first
zero functions t; and 7y;

Some properties of the Fucik type spectra are better seen in a (v, §)-plane;
Odd-numbered branches F,; ; and F,; ; still coincide;
Even-numbered branches F,f and F,; generally differ;

If functions u(y) = vt1(y) and v(d) = §71(J) are monotone then the respective Fucik
type spectra are similar to the classical Fucik spectrum;

If functions u(y) = ~t1(7y) and/or v(§) = 071(d) are not monotone then some
branches of the respective Fuc¢ik type spectra may consist of multiple separate com-
ponents, this feature is new comparing with classical spectrum,;

If functions u(y) = vt1(vy) and v(§) = 671(5) both are monotone in some vicinity
of zero then branches F,;t of a Fucik type spectrum are one-component for large
enough values of k;

If functions u(y) and/or v(§) oscillate in some vicinity of zero then behavior of
branches F; ki of a Fucik type spectrum may be complicated (one might think about
construction of example);
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o If f(z) = g(—=x) for > 0 then branches (components) of a respective Fucik type
spectrum are symmetric with respect to the bisectrix A = p or v = 9.

7 Appendix
Let the numbers a;, b; be such that
O<a1<a2<a3, b1>b2>0, by > by.

Consider a piece-wise linear function f : [0; +00) — [0; +00), which passes through

the origin :
fl(x)7 nggalu

f@) =9 falz), a1 <z <a,
f3(x), = > a3,

@) =pmz+q, fo(z)=pr+q, [f3(x)=pr+gs,
f1(0) =0, fi(a1) = fola1), falaz) = f3(az), f3(as) = bs.
Notice that

by
pP1=— q1 = Oa

a1

bg — b1 b1a2 - ale
b2 = ) Q="

Ao — Q1 a2 — a1

bg — b2 b2a3 - a2b3
p3 = ) q3 - — .

az — a2 az — a2

Our intent is to investigate the first zero function t;(«) of a solution x(¢; ) of the
Cauchy problem

o’ = —f(x), (28)
z(0) =0, 2'(0)=a>0. (29)
This function is given by
g 2ds
o) = | , (30)
) a? —2F(s)

where .
P(a) = [ fs)ds.
0
and z, is the only positive zero of the equation
o® —2F(x) = 0.

The primitive F' can be represented as
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( Fi(z) = ffl(s)ds, 0<z<a,
0
F(z)={ F(r):= flfl(s)ds + [ fa(s)ds, a; <z < ag,
0 a1l
F3(x) := flfl(s)ds—l— f2f2(s)ds+ff3(s)ds, x > as,
\ 0 ail a

7.1 First step
Suppose that

Since ;
Fi(z) = — 2
1( ) 2@1
then the only positive root of the equation
2 2 b1,
a°—2F(z)=0 or o ——z°=
3]
is given by
ai
To =] —
o bl
Then

Therefore
/b1 o [ Jar .,
ap ¢ ay by
t1(a) = $ligla Ji(z) = 2, /Z—ll arcsin Olé =2, /Z—ll arcsin =
_2,/%arcsin1_2,/%g_w,/%

and
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7.2 Second step

Suppose that

Counsider
a1 x
/ B / 2dt / 2dt B
) —2F(t ) a? —2F(t) a? —2F(t)
ai
T 2dt [ 2dt
= / Jl(al) + JQQ(JI),
) \/042—2F1(t) \/062—2F2(t)
al
where
/ vV (llbl
2, /— arcsm = 2@ / arcsm
v/ ° — 2F1 bl
J.
a( / Ja? — 2F2

Notice that
Go(t) i= a® = 2F5(t) = rot? + syt + to(),
where
by — by
o — aq
= —Dp2 > O,
2(&2()1 — albz)

ay — Gz

ro = —

S9 =

= —2¢;
= _2f2(0) < 07
a%bl — 2@1(12()1 + a%bg

a1 — a2

tg = a2 —CL1[)1+

Equation
a® —2F(t) =0

has the only positive root x, for any a > 0 since the function F(t) is monotonically
increasing in the interval [0; +00), F(0) = 0.
If 2F(a;) < a? < 2F(ay), then

o —2F(t) = a® — 2Fy(t) = a® — 2F,(t) = 1mot® + sot + to(a) = Go(t)
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is quadratic polynomial. This means that x, coincide to one of the quadratic polynomial’s
root, and
a; < Ty < as.

The discriminant of the quadratic polynomial Ga(t) is
DQ(O() = S% - 4T2t2 2 O, 2F<(11) S 042 < 2F(a2)
Notice that
Ds () # 0.
» Suppose the contrary is true, that is, there exists ag € [\/QF(al), \/ZF(ag)] such
that Dy(ap) = 0. Then

—59 2qo 1))
'Z‘Oé() = — = = ——.
2rg  —2po D2
One has that
as + a
a3 — Tay a2+@_p22 Q2:f2(2)<07

b2 b2 D2
since fo(az) > 0, bet py < 0. Thus z,, > as, and this is in contradiction with z,, < as.<

Moreover,

Notice that if a > 0 un D = b* — 4ac > 0, then

D

2
ax2—|—bx+c:<\/_x+ \/_> 1

One finds taking this into account that

2dt

) - £ f/J

\/_a? + 2{)

D
\/_+2f T 4a

2
:—ln\/E:c+—+\/ax2+b:c+c+0_—1n2ax+b+2\/a\/ax2+bx+c+01.
Va 2V/a Va
Hence
) /\ﬁ/
22 —2F2 \/T2t2+32t+t2( )

T

2ot + 59 4 24/Ta\/Tot? + st + ta()

:—ln

N
S {ln ‘2T2$+82 +2\/T_2\/T2$2 +32x+t2(a)‘ —1In

al

2roaq + s + 2\/7“_2\/7“2@% + sea1 + ta()

= T [ln ‘27"2w+ Sg + 2/ra\/a? — 2F2(x)‘ —1In ’27’2@1 + 59+ 2¢/Tov/a? — 2F5(ay) ] .
T2

}:

DO
© 3
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It is of interest to note that
903 4 spay + ta(a) = a? — 2Fy(a1) = o® — 2Fi(a1) = o* — a1by.

Therefore

ti(a) = lim Jo(z) = Ji(ar) + lim Joo(z) =

T—Tq T—Tq

= | a® = 2F5(x,) = 1272 + S92 + ta() =0 | =

2
= Jl(CL1> + ? |:11'l ’27’2!170{ + 82| —In ‘27”2&1 + So + 2\/7"2\/ a? — CL1b1
T2

2T21’a+82:2T2_82_T;)2@+52:—\/DQ(OJ) =

= Ji(a1) + % [ln ‘—\/M‘ —1In ‘27‘2a1 + 89 +2\/E\/mu =
= Ji(a1) + [ln\/m—lnPrQal—l—sQ—{—Q\/E\/mu —
} _

1 2
= Ji(a1) + 7 {ln Dy(a) —In <27‘2a1 + 89 + 2y/ro/ a? — a1b1> } .
2

2
VT2
1
= Jl(al) + T |:h’1 DQ(Oé) —21In ‘27’2&1 + So + 2\/@\/ a? — &1[)1
T2

Notice that
2roa; + 53 = —2(peay + q2) = —2fa(a1) = —2by.

Therefore

V2F(a;) < a < /2F(as),

)
vaib 1 D
t1(a) = 2, /21 apcsin Y211 + In 2(@) o
by o} VT2 (—2b1 + 2/r2va? — a1b1)

This can be written also as
V2F(a1) < a < /2F(a2),
a vaib
ti(a) = 21/b—1arcsin Chi
1

(87

_|_

[ln ‘27“233(1 4+ 59+ 2\/6\/@2 — 2F2(aza)) —In ‘27“2(11 4+ 59+ 2\/6\/012 — 2F2(a1)H .

N
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7.3 Third step

Suppose that
o’ >2F(ay) or a>+/2F(ay).

Consider
Ty(z) = / af_—dgm:
where = Ji(a) + Jos(as) + Jaz(x),

/b
ﬁ Vaiby
=24 /— arcsin ,
o by o

ai
2dt
a)) = /— =2, /%% aresin
) Va? —2F(t) b

Tl _7 2t
2 a2 — 2F5(1)

:%[ln

—1In

2raag + So + 24/Tav/a? — 2F(as)

2roa1 + S2 + 24/Tav/ @ — 2F5(ay)

I

o= [ e
Notice that
2ryag + 53 = —2(p2az + q2) = —2f2(az) < 0.
Consider
G3(t) = a® — 2F5(t) = rst® + sst + t3(a),
where
by — by
_a3 — G2
= —p3 <0,
_ 2(agby — azbs)
as — as
= —2q3
= —2/3(0),

t3 = a2 — CLle + a1b2 — CLQZ)Q +

a%bg — 2@2@3[)2 + a%bg

= o 4 const.
a9 — asg
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Since F(t) is strictly monotonic in [0;+00), F(0) = 0, there exists a unique solution
T of the equation
a® —2F(t) =0

for any a > 0.
If o® > 2F (ay), then
o —2F(t) = a? — 2F3(t) = o® — 2F5(t) = r3t® + sst + t3(a) = G3(t)

is a quadratic polynomial. This means that x, coincide with one of the roots of the
quadratic polynomial and
Lo > as.

The discriminant G3(t) of the quadratic polynomial is
D3(a) = 55 —4rst3 >0, o > 2F(ay).

Notice that
Ds(a) # 0.

» Suppose the contrary is true. Then there exists ay € [ 2F (a3), —1—00] such that
Ds(ap) = 0. Then

aQ 27"3 _2p2 p3.
One finds that
+
Tay — Gy = _ 4 4y = P32+ Gs _ J3(ag) <0,
b3 D3 D3

since fa(ag) > 0, p3 > 0. Therefore z,, < as, and this is in contradiction with z,, > a.4

Moreover
—S83 — Dg(Oé)
27“3 )

Ot:

Notice that if a < 0 and D = b* — 4ac > 0, then

) b\> D
ar"+br+c=alz+—) ——
2a 4a
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It follows from the above relation that

/ 2dx 2 d(z+ 2)
\/axz—irbx—l—c VAT \? s
|a| 2Ia\ — (z+ 2—2)21 <m> —(z+2)
2 T+ % 2 o x+ % 2 . 2ax+0b
= arcsin = arcsin = arcsin :
Vlal B V- N —vD
Then
J / / 2 . 27’3t + S3 ’
33( arcsin ————| =
VA 2l 2F3 \/T3t2 + Sgt + tg( ) VT3 — Dg(Oé) a
2 . 2r3x + 53 ) 2r3a3 + 53
——— |arcsin —————= — arcsi
Therefore
vaib
ti(a) = lim J3(z) = Ji(ay) + Jaa(ag) + lim Js3(x) = b_ arcsin Y17 ¢
T—Tq T—Tq 1 (8%

)]+

2raa1 + S3 + 24/rav/a? — 2F(ay

—1In

21909 + S2 + 24/Tav/ % — 2F5(ag)

—i—\/zﬁ[ln

2 27’3$a + S3 . 27’3&2 + S3

+ \/?7“3 [arcsm T\/W — arcsin —\/TT(Q)

2 3_53_\/D3(a +s3

— | 2r3zats3 _ 2r3 =1 =

—/Ds(a) —/Ds(a)

9 aq vV Glbl ™ 2 . 27’3&2 + S3
= — arcsin arcsll ————
by o \/ —"”3 VT3 D3 ()

2roa1 + S2 + 24/Tav/ % — 25 (ay

—1In

1))

2raag + S3 + 24/Tav/a? — 2F(as)

\/25 [ln

Notice that
by — by by — by

Ty = —pP2= — = )
a2 — aq a2 — aq
bz — by
—7’3:—(—273)2293: a a )
3 — Adg

2raa1 + 59 = 2(—p2)ar + (—2¢2) = —2(p2a1 + q2) = —2fa(a1) = —2by;
2ryag + 53 = 2(—p2)az + (—2q2) = —2(p2az + q2) = —2f2(az) = —2bs;
2r3as + 83 = 2(—p3)as + (—2¢3) = —2(psaz + q3) = —2f3(az) = —2by;
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Thus
vaib - 2b
t () = 2, /E arcsin Y212 + @3 %2 | _ 2arcsin——r2 +
bl (83 b3 — bz \/D3(O()

_ —b2 + —21:22 \/a2 — 2F2(a2)
+ 2’& 22 ZI In - (87 Z \ 2F2(a2).
1 — 02

9
—bl —|— M\/QZ — 2F2(a1)

az—ail

If @« — 400, then

ai .V a by
2,/ — arcsin
1 o

— 0.

Since
D3(a) = s3 — 4rsts(a) = s3 — dr3(a® + const) = —drsa® + const,

where r3 < 0, then D3(a) — 400, if & — +00. Therefore

2b
2 arcsin 2 0.
DS (OZ) a——+00

Moreover, since

—bg + \/%\/@2 - 2F2(CL2)
—by 4 /22 /a? —2Fy(ay) “TT

L,

then
1 b2+ Q/—ab;:?l\/CYQ —QFQ(CLQ)
n 0.
b1+ /22 /a2 —2F(ay) | T
Therefore

ag — a9
t .
1(a) p——— \/ be — b 0y
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A. I'punanc, ®. CagpipbaeB. Heaunneiinbie cueKTphl AByIapaMeTPUUYECKNX
3a/1a4 Ha COOCTBEHHBbIE 3HAYEHUS.

Awnnoranud. PaccmarpuBatores 3aauu Ha coOCTBeHHbIE 3HaueHust Buja r”’ = —\f(x)+
pg(x), (i), z(0) = 0, x(1) = 0, (i1). Vimyrca 3Havenus (A, ) Takue, 4TO 3a1a4a
(1), (i) mMeeT HETPUBHATBHOE PelIeHne. DTa 3a1a9a 00001aeT n3BecTHYO 3a1a1y Dydanka
JISL KYCOUHO-TUHEHHBIX ypasHenuii. C me1bio MOKa3aTh, 9T0 HeTHHeHbIe cieKTpel Dydanka
MOTYT CYIIECTBEHHO OTJMYATHCHA OT KJIACCHYECKUX, Mbl paccMmarpusaem dbyuxuun f(x)
1 ¢(x) KyCOUYHO-JIMHEHHBIMHU, YTO JiaeT BO3MOYKHOCTH IMOJIYUUTh sIBHBIE (DOPMYJIbI JiIst
dyuknumit mepBeIx Hysei t; u 7. OTCIOIa TOJYYAI0TCS IBHBIE BBIPAYKEHUS JIJIT COOTBET-
CTBYIOIUX CIHeKTpoB Pyumka.

VIIK 517.927

A. Gricans, F. Sadirbajevs. Divu parametru ipasvertibu problemu ne-
linearie spektri.
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Anotacija. Tika apskatitas ipasvertibu problemas forma z” = —\f(x)+pg(z), (i),
z(0) = 0, (1) = 0, (ii). Meklgjam (A, ) tadus, ka problemai (i), (i) ir netrivialie
atrisinajumi. Sis uzdevums visparina slavenu Fucika problemu kad f(z) = z+ un g(z) =
x~. Mes iegustam tiesas formulas Fucika spektriem gadijuma, kad funkcijas f(x) un g(x)

katra ir gabaliem linearas funkcijas. legutie spektri butiski atskiras no klasiskiem.
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