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On solutions of the Liénard type equation

S.Atslega

Summary. We provide conditions on the functions f(x) and g(x), which ensure
the existence of “small” and “large” amplitude periodic solutions to the equation x′′ +
f(x)x′2 + g(x) = 0. Solvability of the Neumann boundary value problem is considered
also.

MSC: 34B15, 34C25

1 Introduction

Intensive literature is devoted to investigation of the Liénard equation

x′′ + f(x)x′ + g(x) = 0 (1)

due to its importance in applications. Existence (also nonexistence) of periodic solutions
is the main subject of investigations. This depends of course on properties of functions f
and g. Burton points out that phase portraits for (1) are well known if the function f(x)
is supposed to be positive and g(x) is assumed to be of odd type, that is, xg(x) > 0 ([2],
[3]). Let F (x) =

∫ x

0
f(s) ds. The existence of periodic solutions of (1) was studied in the

work [5] provided that F (x) can change sign and the amplitudes of F (x) are decreasing.
The function g(x) was supposed to be of odd type.

On the other hand, it is known that conservative equation

x′′ + g(x) = 0 (2)

always has periodic solutions if the function g(x) has simple zeros where g′(x) > 0. The
equivalent system {

x′ = y,
y′ = −g(x)

(3)

then has critical points of the type “center” and “small”-amplitude periodic solutions
appear. In the case of xg(x) > 0 the only critical point is (0; 0) and a set (continuum) of
closed curves exist in a neighborhood of the critical point. If the function g(x) is negative
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for x ∈ (pi+1, +∞) and positive for x ∈ (−∞, p1) and there exist i−1 simple (g′ 6= 0) zeros
in (p1, pi+1), then equation (2) may have also “large”-amplitude solutions. The respective
closed orbits go around (enclose) several critical points. For details one may consult the
work [4].

From the point of view of the boundary value problems (BVP) periodic solutions
with appropriate periods may satisfy some prescribed boundary conditions. We have
considered the Neumann boundary conditions

x′(0) = 0, x′(1) = 0 (4)

in the work [1].
Recently the paper by Sabatini was published ([6]) where the equation

x′′ + f(x)x′2 + g(x) = 0 (5)

was studied. Among other things the transformation was presented which turns equation
(5) to the conservative form

u′′ + h(u) = 0. (6)

The goal of our paper is to study the equation (5) with respect to existence of periodic
solutions.

In the second section we recall the results for conservative equation (2). In the third
section reduction of equation (5) to (6) is considered. Results for equation (5) are estab-
lished in the fourth section. Discussion follows in the fifth one and examples illustrating
the results are given in the sixth section.

2 Equation x′′ + g(x) = 0

Let g(x) be a continuously differentiable function like in Fig. 2.1. Zeros of g(x) are
p1 < p2 < p3 < p4 < p5.

x

gHxL, GHxL

p1 p2 p3 p4 p5

Figure 2.1 Functions g(x) and
G(x) (the primitive)

Figure 2.2 The phase plane

The equivalent system has three saddle points at (p1, 0), (p3, 0), (p5, 0) and centers at
(p2, 0) and (p4, 0).

The typical phase portrait is given in Fig. 2.2. There are two sets of “small” amplitude
periodic solutions located in neighborhoods of (p2, 0) and (p4, 0).
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No other nontrivial periodic solutions exist if three local maxima of the primitive
G(x) are such that either G(p1) > G(p3) > G(p5) or G(p1) < G(p3) < G(p5) or G(p5) <
G(p1) < G(p3)or G(p1) < G(p5) < G(p3).

Situation is quite different if G(p3) is less that G(p1) and G(p5). Then appear “large”
amplitude periodic solutions like in Fig. 2.4.

x

GHxL

p1 p2 p3 p4 p5

Figure 2.3 The primitive G(x) Figure 2.4 The phase plane for the case
G(p3) < G(p1) < G(p5).

Theorem 2.1 If G(p3) is less (strictly) than G(p1) and G(p5), then equation (2) has
“large”-amplitude periodic solutions, that is, solutions with trajectories going around the
critical points (p2; 0) and (p4; 0).

Remark 2.1. If the inequalities G(p1) > G(p3) > G(p5) or G(p1) < G(p3) < G(p5) or
G(p5) < G(p1) < G(p3)or G(p1) < G(p5) < G(p3) hold then “large”-amplitude periodic
solutions do not exist. This can be shown. See picture 2.2, which corresponds to the case
of the above mentioned.

3 Reduction of x′′ + f (x)x′2 + g(x) = 0 to u′′ + h(u) = 0

Let F (x) =
∫ x

0
f(s) ds. Let G(x) =

∫ x

0
g(s) ds. The function Φ(x) was introduced in [6]

by the formula

Φ(x) =

∫ x

0

eF (s) ds. (7)

It is evident that Φ(x) satisfies the condition xΦ(x) > 0 for x 6= 0. The growth rate of
Φ(x) depends on properties of the primitive F (x). It is important that Φ(x) is strictly
monotone function for any F since Φ′(x) = eF (x) > 0 ∀x ∈ R. Then the relation

Φ(x) = u (8)

defines u = u(x) and the inverse function x = x(u) exists. We will use these functions
defined for various F throughout in our considerations.

Our further study employs the following basic result from [6].

Lemma 3.1 ([6], Lemma 1) The function x(t) is a solution to (5) if and only if u(t) =
Φ(x(t)) is a solution to

u′′ + g(x(u))eF (x(u)) = 0. (9)
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Denote H(u) =
∫ u

0
g(x(s))eF (x(s)) ds. The existence of periodic solutions and the exis-

tence of solutions to the Neumann BVP depends entirely on properties of the primitive
H.

Let us state some easy assertions about equation (5) and the equivalent system
{

x′ = y,
y′ = −f(x)y2 − g(x)

(10)

Proposition 3.1 Critical points and their character are the same for systems (3) and
(10).

Proof. Critical points of both systems are the points (xi, 0), where xi are zeros of
g(x). Points (p1, 0), (p3, 0), (p5, 0) are saddle points and (p2, 0) and (p4, 0) are the centers.
Consider linearized at a point (pi, 0) system (3)

{
ξ′ = η,
η′ = −gx(pi)ξ

(11)

where pi is a zero of g(x). Consider also linearized at a point (pi, 0) system (10)



α′ = β,
β′ = −[fx(pi)y + gx(pi)]|(pi,0)α + [2f(x)y]|(pi,0)β

= −gx(pi)α
(12)

{
α′ = β,
β′ = −[fx((pi, 0))y2 + gx((pi, 0))]α + [2f((pi, 0))y]β

(13)

{
α′ = β,
β′ = −gx((pi; 0))α

(14)

Systems (11) and (14) up to notation are the same. ¤
Consider a system {

u′ = v,
v′ = −g(x(u))eF (x(u)) (15)

equivalent to equation (9).

Proposition 3.2 Critical points (x, 0) and (u(x), 0) of systems (3) and (15) are in 1-to-1
correspondence and their characters are the same.

Proof. Let us show that critical points (x, 0) of system (3) turn to critical points
(u(x), 0) of system (15). Then by Proposition 3.1 critical points (x, 0) of system (3) turn
to critical points (u(x), 0) of system (15).

Proposition 3.3 Periodic solutions x(t) of equation (5) turn to periodic solutions u(t) =
Φ(x(t)) by transformation (8).

Proposition 3.4 Homoclinic solutions of (5) turn to homoclinic solutions of equation
(9) by transformation (8).

Proposition 3.5 Let p be a zero of g(x). The equality

gx(p) = gu(x(u))eF (x(u))|u=p (16)

is valid.

Proof. By calculation of the derivative.
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4 The result

Consider equation (9). This equation is conservative and Theorem 2.1 applies. Denote
H(u) =

∫ u

0
g(x(s))eF (x(s)) ds. The function H(u) has the same structure as G(x) that is,

it has exactly 3 points of maxima and 2 minimum points. Moreover, H(u) has three local
maxima at the points u(p1), u(p3) and u(p5), where u is as in (8), and two local minima
at the points u(p2) and u(p4).

Theorem 4.1 Let the inequalities hold:

H(u(p3)) < H(u(p1))
H(u(p3)) < H(u(p5))

(17)

Then equation (5) has “large”-amplitude periodic solutions.

Proof. By application theorem 2.1 to equation (5) and using Proposition (3.3).

5 Case f (x) = 2kx

Then f(x) = 2kx and F (x) = kx2, u = Φ(x) =
∫ x

0
eks2

ds. Equation (9) takes the form

u′′ + g(x(u))ekx2(u) = 0. (18)

Consider the equation (5) with f(x) = 2kx and equation (2). Suppose that G(x)
is such that G(p1) > G(p3) > G(p5). Then by Theorem 2.1 and Remark after “large”-
amplitude periodic solutions of (3) do not exist. Then equation (18) and, consequently,
equation (5) do not have “large”-amplitude periodic solutions. For large enough k > 0
the shape of H(u) changes so that the inequalities (17) hold. Then “large”-amplitude
periodic solutions appear in (18), and, consequently, in equation (5). Further growth of
k > 0 results in the fact that H(u(p1)) < H(u(p3)) < H(u(p5)). Then “large”-amplitude
solutions disappear.

The explanation is the following.
1) k is “small”, the inequalities H(u(p1)) > H(u(p3)) > H(u(p5)) hold.
2) k is “middle”, then the inequalities (17) hold (as a result of multiplication g(x) by

ekx2
in (18)).

3) k is “large”, then the inequalities H(u(p1)) < H(u(p3)) < H(u(p5)) hold.

6 Example

Let consider equation (2), where

g(x) = −0.108x + 0.831x2 − 2.23x3 + 2.5x4 − x5. (19)

The function (19) has exactly 5 simple zeros p1 = 0; p2 = 0.3; p3 = 0.5; p4 = 0.8; p5 =
0.9. The equivalent two-dimensional system (3) has 3 critical points of the type “saddle”
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Figure 6.1 Function g(x)
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Figure 6.2 Function G(x)

Figure 6.3 The phase plane

and 2 critical points of the type “center”. Respectively the function G(x) =
∫ x

0
g(s) ds

has 3 local maxima and 2 local minima as its shown in Fig. 6.1 and 6.2.
How we can see “large”-amplitude periodic solutions of in this case do not exist.
Let consider equation (5) with (19) and f(x) = 2kx.
1) If k = 5, then there are only “small”-amplitude periodic solutions.

pi ui

0 0
0.3 0.351787
0.5 0.816757
0.8 3.83505
0.9 7.66983

Figure 6.4 The phase plane

2) If k = 13, then there are “small”-amplitude and “large”-amplitude periodic solu-
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tions.
pi ui

0 0
0.3 0.472704
0.5 2.47552
0.8 212.627
0.9 1690.25

Figure 6.5 The phase plane

3) If k = 20, then there are only “small”-amplitude periodic solutions.

pi ui

0 0
0.3 0.639123
0.5 8.58608
0.8 11828.1
0.9 311828

Figure 6.6 The phase plane
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Ñ. Àòñëåãà. Î ðåøåíèÿõ óðàâíåíèÿ òèïà Ëüåíàðà.
Àííîòàöèÿ. Ïðèâîäÿòñÿ óñëîâèÿ íà ôóíêöèè f(x) è g(x), äîñòàòî÷íûå äëÿ ñó-

ùåñòâîâàíèÿ ðåøåíèé óðàâíåíèÿ x′′ + f(x)x′2 + g(x) = 0 ñ �ìàëûìè� è �áîëüøèìè�
àìïëèòóäàìè. Ðàññìàòðèâàåòñÿ òàêæå ðàçðåøèìîñòü çàäà÷è Íåéìàíà íà ôèêñèðî-
âàííîì èíòåðâàëå.

ÓÄÊ 517.927

S. Atslega. Rezultāti par Ljenara tipa vienādojuma atrisinājumiem.
Anotācija. Tiek apskat̄ıts Ljenara tipa diferenciālvienādojums x′′ + f(x)x′2 + g(x) =

0. Doti pietiekamie nosac̄ıjumi ”mazo” un ”lielo” amplitūdu atrisinājumu eksistencei
funkciju f un g terminos. Papildus tiek pēt̄ıta Neimana problēma uz fiksēta intervālā.
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