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On solutions of the fourth-order
nonlinear boundary value problems

I. Yermachenko and F. Sadyrbaev

Summary. We consider a two-point boundary value problem for the fourth-order
non-autonomous Emden-Fowler type equation using the quasilinearization process. We
reduce the given nonlinear equation to a some quasi-linear one with a non-resonant linear
part so that both equations are equivalent in some bounded domain. We use a fact that
modified quasi-linear problem has a solution of definite type, which corresponds to the
type of the linear part. If a solution of the quasi-linear problem is located in the domain
of equivalence, then the original problem has a solution. If quasilinearization is possible
for essentially different linear parts, then the original problem has multiple solutions.

1991 MSC 34B15

1 Introduction

Consider two-point boundary value problem for the fourth-order nonlinear differential
equation

x(4) = q(t) · |x|p sgn x, (1)

x(0) = x′(0) = 0 = x(1) = x′(1), (2)

where p > 1, t ∈ I := [0, 1], q(t) ∈ C(I, (0, +∞)).
Our aim is to obtain conditions for existence of multiple solutions. We investigate

the problem (1), (2) by reducing it to multiple quasi-linear problems of different types.
Suppose that equation (1) can be reduced to the quasi-linear one of the form

x(4) − k4x = F (t, x), (3)

where
(
L4x

)
(t) := x(4)− k4x is a non-resonant linear part, function F (t, x) is continuous

and bounded and equations (1), (3) are equivalent in some domain

Ω = {(t, x) : 0 ≤ t ≤ 1, |x| ≤ N}.
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If a solution x(t) of the quasi-linear problem (3), (2) is located in the domain of equivalence
Ω(t, x) (|x(t)| ≤ N), then this x(t) also solves the original problem (1), (2). We then say
that the original problem allows for quasilinearization with respect to the linear part(
L4x

)
(t) := x(4) − k4x.

If the original problem allows for quasilinearization for different values of k, then in
some cases we can obtain different solutions, that is the solutions with different oscillatory
properties. Let us illustrate this by considering the second-order problem.

2 Second-order linear problems and

respective linear parts

Consider the second-order Cauchy problems (for various k)

x′′ + k2x = 0,
x(0) = 0, x′(0) = 1.

(4)

Linear parts
(
L2x

)
(t) := x′′ + k2x are non-resonant (this means that the respective ho-

mogeneous problems x′′ + k2x = 0, x(0) = 0, x(1) = 0 have only the trivial solution),
if the coefficient k belongs to one of the intervals

(0, π), (π, 2π), . . . , (iπ, (i + 1)π), . . .

Definition of an i-nonresonance of the linear part was given in [7], [8]. If the linear parts
x′′ + k2

i x and x′′ + k2
j x are respectively i-nonresonant and j-nonresonant, we say then

that such linear parts are essentially different. If the linear parts of the problems (4) are
essentially different, then respective quasi-linear boundary value problems have solutions
with different oscillatory properties.

For the values of k from different intervals (the above mentioned) the solutions of the
problem (4) with different oscillatory properties are obtained and shown below.
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Figure 2.1. 0-nonresonance of a linear part

Figure 2.1 shows the solutions of the problem (4) for k1 = π
2

and k2 = 2π
3

. The linear
parts x′′ + k2

1x and x′′ + k2
2x are 0-nonresonant.
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Figure 2.2. 1-nonresonance of a linear part
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Figure 2.2 illustrates the solutions of the problems (4) for k3 = 3π
2

and k4 = 5π
3

; each
of them has exactly one zero in the interval (0, 1). The respective linear parts x′′ + k2

3x
and x′′ + k2

4x are 1-nonresonant.
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Figure 2.3. 2-nonresonance of a linear part

If k ∈ (2π, 3π) (for instance, k5 = 5π
2

and k6 = 8π
3

), then the respective solution
of the problem (4) has exactly two zeros in the interval (0, 1) (see Figure 2.3) and the
corresponding linear part is 2-nonresonant.

Therefore, if the values of k belong to the same interval (iπ, (i + 1)π), then the
respective solutions of the problems (4) have similar oscillatory properties. If the numbers
ki and kj belong to different intervals (iπ, (i + 1)π) and (jπ, (j + 1)π) (i 6= j), then the
linear parts x′′ + k2

i x and x′′ + k2
j x have different type of nonresonance (the linear parts

are essentially different) and the respective solutions of the problems (4) have different
oscillatory properties.

3 Fourth-order quasi-linear problems and

types of solutions

Consider the quasi-linear problems of the form

x(4) − k4x = F (t, x),
x(0) = x′(0) = 0 = x(1) = x′(1),

(5)

where t ∈ I := [0, 1], F, Fx : I × R → R are continuous, F is bounded and the following
condition is satisfied for any (t, x)

k4 +
∂F (t, x)

∂x
> 0. (6)

In our investigation we use the oscillation theory by Leighton-Nehari for the fourth-order
linear differential equations [4]

x(4) − p(t)x = 0, p(t) > 0. (7)

We use their definition of a conjugate point and define an i-nonresonanse of the linear
part and an i-type solution of the quasi-linear problem (5) (see [9], [11], [12]).

Remark 3.1. The conjugate points (or double zeros) in the oscillation theory for the
fourth-order linear differential equations play the same role as the ordinary zeros in the
oscillation theory for the second-order equations.
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Remark 3.2. We use the following facts in our investigation:
1) for the linear equation x(4) − k4x = 0 the respective conjugate points η (to the point
t = 0) satisfy the relation cos kη · cosh kη = 1;
2) if the values of k are in the form πn (n = 1, 2, . . .), then there exist (n − 1) conju-
gate points in the interval (0, 1), in other words the linear part

(
L4x

)
(t) := x(4) − k4x is

(n− 1)-nonresonant for k = πn, n = 1, 2, . . ..

Let us recall the definition of an i-type solution.

Definition 3.1 We will say that ξ(t) is an i-type solution of the quasi-linear problem
(5), if for small enough α, β > 0 the difference u(t; α, β) = x(t; α, β) − ξ(t) has at most
i + 1 zeros in the interval (0, 1] (counting multiplicities), where x(t; α, β) is a solution of
the same quasi-linear equation, which satisfies the initial conditions

x(0; α, β) = ξ(0), x′(0; α, β) = ξ′(0), (8)

x′′(0; α, β) = ξ′′(0) + α, x′′′(0; α, β) = ξ′′′(0)− β. (9)

We call the solution x(t; α, β) by neighboring solution.

The following theorem plays the basic role in our investigation.

Theorem 3.1 The quasi-linear problem (5) has an i-type solution, if the condition (6)
is fulfilled and the linear part (L4x)(t) = x(4) − k4x is i-nonresonant.

Theorem 3.1 was proved in [9], [12].

4 Application

We apply Theorem 3.1 to the boundary value problem (1), (2), that is, to the problem

x(4) = q(t) · |x|p sgn x,
x(0) = x′(0) = 0 = x(1) = x′(1).

(10)

Theorem 4.1 Suppose that

0 < q1 ≤ q(t) ≤ q2 ∀t ∈ [0, 1]. (11)

If there exists some k of the form k = πi, (i = 1, 2, . . .), which satisfies the inequality

k · ek(4
√

2 + 3)− 1

4(ek + 1)
< β · p

p
p−1

(p− 1)

(q1

q2

) 1
(p−1)

for k = (2n− 1)π (12)

or

k · ek(4
√

2 + 3) + 1

4(ek − 1)
< β · p

p
p−1

(p− 1)

(q1

q2

) 1
(p−1)

for k = 2nπ, (13)

where β is a positive root of the equation

βp = β + (p− 1) · p p
1−p , (14)

then there exists an (i− 1)-type solution of the problem (1), (2).
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Proof. The given nonlinear equation (1) is equivalent to the equation

x(4) − k4x = q(t) · |x|p sgn x− k4x. (15)

Suppose that k satisfies the non-resonance condition cos k · cosh k 6= 1 and the linear part(
L4x

)
(t) := x(4) − k4x is therefore non-resonant with respect to the boundary conditions

(2).
Denote the right side of the equation (15) by fk(t, x) and try to bound it. For a fixed

t = t∗ we can calculate the value of the function fk(t, x) at the point of extremum x0. Set

mk(t
∗) = |fk(t

∗, x0)| =
(k4

p

) p
p−1 · (p− 1) · q(t∗) 1

1−p . (16)

Choose nk(t
∗) such that

|x| ≤ nk(t
∗) ⇒ |fk(t

∗, x)| ≤ mk(t
∗).

Computation gives that

nk(t
∗) =

( k4

q(t∗)

) 1
p−1

β, (17)

where a constant β > 1 is described in (14). Set

Mk = max{mk(t
∗) : t∗ ∈ [0, 1]}, Nk = min{nk(t

∗) : t∗ ∈ [0, 1]}.

Let us consider now the corresponding quasi-linear equation

x(4) − k4x = Fk(t, x), (18)

where Fk(t, x) := ϕ(x)fk(t, x) and function ϕ(x) is such that ϕ = 1, if |x(t)| ≤ Nk, and
Fk(t, x) is smooth and bounded by the value of Mk > 0.

The modified quasi-linear problem (18), (2) can be written in the integral form

x(t) =

1∫

0

Gk(t, s)Fk(s, x(s)) ds,

where Gk(t, s) is the Green’s function for the respective homogeneous problem

x(4) − k4x = 0,
x(0) = x′(0) = 0 = x(1) = x′(1).

(19)

We have constructed the Green’s function Gk(t, s) and have obtained the estimate for it
in [9], [11]. Then a solution of the quasi-linear problem (18), (2) satisfies

∣∣x(t)
∣∣ ≤ Γk ·Mk

(Γk is an estimate of the Green’s function). If moreover the inequality

Γk ·Mk < Nk (20)
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holds, then equations (1) and (18) are equivalent in the domain

Ωk = {(t, x) : 0 ≤ t ≤ 1, |x| < Nk}.
Notice that in this domain of equivalence Ωk the function Fk(t, x) is continuously

differentiable and the condition (6) is fulfilled (i.e. k4 +
∂F (t, x)

∂x
> 0). So it follows

from Theorem 3.1 that if the linear part (L4x)(t) = x(4) − k4x is i-nonresonant, then
the quasi-linear problem (18), (2) has an i-type solution, if moreover the inequality (20)
holds, then the original problem (1), (2) also has an i-type solution.

Consider the inequality (20) and assume that q(t) satisfies (11). Since p > 1, then

max
t∗∈[0, 1]

mk(t
∗) =

(
k4

p

) p
p−1 · (p− 1) · q

1
1−p

1 ,

min
t∗∈[0, 1]

nk(t
∗) =

(
k4

q2

) 1
p−1

β.
(21)

Therefore the inequality (20) takes the form

k4 · Γk < β · p
p

p−1

(p− 1)

(q1

q2

) 1
(p−1)

. (22)

Let us consider values k of the form k = πi (i = 1, 2 . . .). For such k the linear part
(L4x)(t) = x(4) − k4x is (i − 1)-nonresonant and the Green’s function Gk(t, s) satisfies
either the estimate

∣∣Gk(t, s)
∣∣ <

ek(4
√

2 + 3)− 1

4k3(ek + 1)
=: Γ1(k), if k = (2n− 1)π (23)

or ∣∣Gk(t, s)
∣∣ <

ek(4
√

2 + 3) + 1

4k3(ek − 1)
=: Γ2(k), if k = 2nπ. (24)

It follows from (22), (23), (24) that the inequality (20) reduces respectively either to (12)
or (13). Therefore if there exists some k in the form k = πi, (i = 1, 2, . . .), which satisfies
an inequality (12) or (13), then there exists an (i− 1)- type solution of the given problem
(1), (2). The proof is complete.

Corollary 4.1 If there exist k = πi, i = 1, 2, . . . , m, which satisfy the inequalities (12),
(13), then there exist at least m solutions of different types to the problem (1), (2).

In Appendix we provide a table of the obtained results of calculations. For certain

values of p and
q1

q2

the numbers k in the form k = πi, i = 1, 2, . . . are given, which satisfy

the inequalities (12), (13).

5 Example

Consider the fourth-order nonlinear boundary value problem

x(4) = 50(81 + sin π
2
t)|x| 98 sgn x,

x(0) = x′(0) = 0 = x(1) = x′(1).
(25)
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It is a special case of the problem (1), when p =
9

8
and q(t) = 50(81 + sin π

2
t). Since

min
[0, 1]

q(t) = 4050 and max
[0, 1]

q(t) = 4100 then the quotient
q1

q2

=
81

82
. So in accordance with

calculations (see Table 1 in Appendix) and Corollary 3.1 there exist at least four solutions
of different types to the given problem (25). We have computed them.
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Figure 5.1. 0-type solution

The solid line in Figure 5.1 indicates a trivial solution of the problem (25) and the
dashed line relates to one of the corresponding neighboring solutions (see Definition 3.1).
All other neighboring solutions are such that the difference between neighboring solution
and the trivial one has no conjugate points (double zeros) in the interval (0, 1), therefore
the trivial solution is a 0-type solution. Figure 5.2 shows another solution of the problem
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Figure 5.2. 1-type solution
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Figure 5.3. The difference be-
tween neighboring solution and
1-type sol.

(25) in solid (one of the corresponding neighboring solutions is shown in dashed). This
solution is an 1-type solution because the difference between neighboring solution and it
(see Figure 5.3) has exactly one conjugate point in (0, 1) η = 0, 959862. The initial data
of the 1-type solution are x′′(0) = 0, 000002, x′′′(0) = −0, 000009223.

Figure 5.4 illustrates a 2-type solution of the problem (25). The initial data of this
solution are x′′(0) = 51, x′′′(0) = −395, 08258. The graphs of the respective neighbor-
ing solutions is difficult to show, because two lines almost coincide. Nevertheless, the
differences between some neighboring solutions and this solution are depicted in Figure
5.5 and Figure 5.6. There exist exactly two conjugate points in (0, 1): η1 = 0, 586519,
η2 = 0, 972921.

Figure 5.7 illustrates a 3-type solution of the problem (25). The initial data of this so-
lution are x′′(0) = 5100000, x′′′(0) = −55374924, 809. The differences between respective
neighboring solutions and this solution are depicted in Figure 5.8, Figure 5.9 and Figure
5.10. There exist exactly three conjugate points in (0, 1): η1 = 0, 418951, η2 = 0, 695755,
η3 = 0, 973976.
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Figure 5.4.2-type
solution

0.2 0.4 0.6 0.8 1

0.00005

0.0001

0.00015

0.0002

0.00025

0.0003

Figure 5.5. The
difference between
neighboring solution
and 2-type solution,
α1 = 0, 01, β1 =
0, 07823
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Figure 5.6.The
difference between
neighboring solution
and 2-type solution,
α2 = 0, 001, β2 =
0, 0079747
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Figure 5.7. 3-type solution
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Figure 5.8. The difference be-
tween neighboring solution and
3-type sol., α1 = 0, 1, β1 =
1, 0974

6 Remarks about the sublinear case

It should be said that the same type arguments are valid in the case of the Emden -
Fowler type equation (10), where 0 < p < 1.

The difficulty is that the right side of this equation is not differentiable at x = 0. So the
type of the trivial solution x ≡ 0 is indefinite. If we ignore it, all other possible solutions
(nontrivial ones) have definite type which under certain conditions can be revealed by the
described above quasi-linearization process. This process is possible if some relations of
the type (12), (13) hold. The respective calculations were carried out and the results are
represented in Table 2.
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Figure 5.9. The difference be-
tween neighboring solution and
3-type sol., α2 = 0, 1, β2 =
1, 1187
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Figure 5.10.The difference be-
tween neighboring solution and
3-type sol., α3 = 0, 5, β3 =
5, 5881
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7 Appendix

Table 1. Superlinear case p > 1.

p =
5

4
β ≈ 1.2813 q1

q2
≥ 29

30
k = π; k = 2π

p =
6

5
β ≈ 1.2884 q1

q2
≥ 15

16
k = π; k = 2π

p =
7

6
β ≈ 1.2933 q1

q2
≥ 12

13
k = π; k = 2π

q1

q2
≥ 53

54
k = π; k = 2π; k = 3π

p =
8

7
β ≈ 1.2969 q1

q2
≥ 11

12
k = π; k = 2π

q1

q2
≥ 27

28
k = π; k = 2π; k = 3π

p =
9

8
β ≈ 1.2998 q1

q2
≥ 10

11
k = π; k = 2π

q1

q2
≥ 21

22
k = π; k = 2π; k = 3π

q1
q2
≥ 81

82
k = π; k = 2π; k = 3π; k = 4π

p =
10

9
β ≈ 1.3019 q1

q2
≥ 10

11
k = π; k = 2π

q1

q2
≥ 18

19
k = π; k = 2π; k = 3π

q1
q2
≥ 43

44
k = π; k = 2π; k = 3π; k = 4π

p =
11

10
β ≈ 1.3038 q1

q2
≥ 10

11
k = π; k = 2π

q1

q2
≥ 17

18
k = π; k = 2π; k = 3π

q1
q2
≥ 32

33
k = π; k = 2π; k = 3π; k = 4π

q1

q2
≥ 111

112
k = π; k = 2π; k = 3π; k = 4π; k = 5π

p =
12

11
β ≈ 1.3053 q1

q2
≥ 10

11
k = π; k = 2π

q1

q2
≥ 16

17
k = π; k = 2π; k = 3π

q1
q2
≥ 27

28
k = π; k = 2π; k = 3π; k = 4π

q1
q2
≥ 60

61
k = π; k = 2π; k = 3π; k = 4π; k = 5π
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Table 2. Sublinear case 0 < p < 1.

p =
4

5
β ≈ 1.3632 q1

q2
≥ 25

26
k = π; k = 2π

p =
5

6
β ≈ 1.3554 q1

q2
≥ 15

16
k = π; k = 2π

p =
6

7
β ≈ 1.3499 q1

q2
≥ 13

14
k = π; k = 2π

q1

q2
≥ 45

46
k = π; k = 2π; k = 3π

p =
7

8
β ≈ 1.3461 q1

q2
≥ 11

12
k = π; k = 2π

q1

q2
≥ 27

28
k = π; k = 2π; k = 3π

p =
8

9
β ≈ 1.3431 q1

q2
≥ 11

12
k = π; k = 2π

q1

q2
≥ 21

22
k = π; k = 2π; k = 3π

q1
q2
≥ 69

70
k = π; k = 2π; k = 3π; k = 4π

p =
9

10
β ≈ 1.3407 q1

q2
≥ 11

12
k = π; k = 2π

q1

q2
≥ 19

20
k = π; k = 2π; k = 3π

q1
q2
≥ 42

43
k = π; k = 2π; k = 3π; k = 4π

p =
10

11
β ≈ 1.3388 q1

q2
≥ 11

12
k = π; k = 2π

q1

q2
≥ 18

19
k = π; k = 2π; k = 3π

q1
q2
≥ 32

33
k = π; k = 2π; k = 3π; k = 4π

q1
q2
≥ 94

95
k = π; k = 2π; k = 3π; k = 4π; k = 5π

p =
11

12
β ≈ 1.3373 q1

q2
≥ 11

12
k = π; k = 2π

q1

q2
≥ 17

18
k = π; k = 2π; k = 3π

q1
q2
≥ 28

29
k = π; k = 2π; k = 3π; k = 4π

q1
q2
≥ 58

59
k = π; k = 2π; k = 3π; k = 4π; k = 5π
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È. Åðìà÷åíêî, Ô. Ñàäûðáàåâ. Î ðåøåíèÿõ íåëèíåéíîé êðàåâîé çàäà÷è
÷åòâåðòîãî ïîðÿäêà.

Àííîòàöèÿ. Ïðîöåññ êâàçèëèíåàðèçàöèè ïðèìåíÿåòñÿ ê èçó÷åíèþ äâóõòî÷å÷-
íîé íåëèíåéíîé êðàåâîé çàäà÷è äëÿ íåàâòîíîìíîãî óðàâíåíèÿ Ýìäåíà - Ôàóëåðà
÷åòâåðòîãî ïîðÿäêà. Äàííîå íåëèíåéíîå óðàâíåíèå ñâîäèòñÿ ê êâàçèëèíåéíîìó óðàâ-
íåíèþ ñ íåðåçîíàíñíîé ëèíåéíîé ÷àñòüþ òàêèì îáðàçîì, ÷òî îáà óðàâíåíèÿ ýêâèâà-
ëåíòíû â íåêîòîðîé îãðàíè÷åííîé îáëàñòè. Èñïîëüçóåòñÿ ïðèìå÷àòåëüíûé ôàêò, ÷òî
ìîäèôèöèðîâàííàÿ íåëèíåéíàÿ çàäà÷à èìååò ðåøåíèå îïðåäåëåííîãî òèïà, ñîîòâåò-
ñòâóþùåãî òèïó ëèíåéíîé ÷àñòè. Åñëè ðåøåíèå êâàçèëèíåéíîé çàäà÷è ïðèíàäëåæèò
îáëàñòè ýêâèâàëåíòíîñòè, òî îíî æå ÿâëÿåòñÿ è ðåøåíèåì èñõîäíîé çàäà÷è. Åñëè
îïèñàííûé ïðîöåññ êâàçèëèíåàðèçàöèè âîçìîæåí äëÿ ñóùåñòâåííî ëèíåéíûõ ÷àñòåé,
òî èñõîäíàÿ çàäà÷à èìååò íåñêîëüêî ðåøåíèé.

ÓÄÊ 517.51 + 517.91

I. Jermačenko, F. Sadirbajevs. Par ceturtās kārtas nelineāro robežproblēmu
atrisinājumiem.

Anotācija. Tiek apskat̄ıtas divpunktu nelineārās robežproblēmas neautonomiem
ceturtās kārtas Emdena-Faulera tipa vienādojumiem. Doto nelineāro diferenciālvienā-
dojumu reducē uz kādu kvazi-lineāro vienādojumu ar nerezonantu lineāru daļu tā, lai abi
vienādojumi būtu ekvivalenti kādā ierobežotā apgabalā. Mēs izmantojam faktu, ka iegūtai
kvazi-lineārai problēmai ir noteiktā tipa atrisinājums, kurš atkar̄ıgs no lineāras daļas tipa.
Ja kvazi-lineārās problēmas atrisinājums atrodas ekvivalences apgabalā, tad dotā ne-
lineārā problēma ir atrisināma. Ja kvazilineārizācija ir iespējama ar būtiski dažādām
lineārām daļām, tad dotajai problēmai ir vairāki atrisinājumi.
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