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On Fučik spectra for the third and fourth order
equations 1

N. Sergejeva

Summary. We construct Fučik spectra for some specific differential equations of the
third and fourth order. These spectra differ essentially from the known ones.

1991 MSC primary 34B15 26B40

1 Introduction

In this work we study Fučik spectra for some third and fourth order equations with
piece-wise linear right sides.

Investigations of Fučik spectra have started in sixtieth of XX century [1]. A number
of authors have studied the specific cases. Let us mention the cases of the Dirichlet [1],
the Sturm-Liouville [5] and the periodic boundary conditions. There are some papers on
higher order equations. Habets and Gaudenzi have studied the third order problem with
the boundary conditions x(0) = x′(0) = 0 = x(1) in the work [3], where many useful
references on the subject can be found. Fučik spectra for the fourth order equations were
considered by Kreiči [2] and Pope [4].

The paper is organized as follows. In Section 2 we study the third order problem with
the boundary conditions x(0) = x′(0) = 0 = x′(1). In Section 3 we present results on the
Fučik spectrum for the boundary conditions x(0) = x′(0) = 0 = x(1). These are the main
results of the work. Connections between those spectra are discussed in Section 4.

2 The third order problem with the boundary con-

ditions x(0) = x′(0) = 0 = x′(1)

Consider the equation
x′′′ = −µ2x′+ + λ2x′−, µ, λ ≥ 0, (2.1)
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x′+ = max{x′, 0}, x′− = max{−x′, 0},
with the boundary conditions

x(0) = x′(0) = 0 = x′(1). (2.2)

Definition 1 The Fučik spectrum is a set of points (λ, µ) such that the problem (2.1),
(2.2) has nontrivial solutions.

The first result describes decomposition of the spectrum into branches F+
i and F−

i

(i = 0, 1, 2, . . .) according to the number of zeroes of the derivative of a solution to the
problem (2.1), (2.2) in the interval (0, 1).

Proposition 1 The Fučik spectrum consists of the set of curves
F+

i = {(λ, µ)| x′′(0) > 0, the derivative of the nontrivial solution of the
problem(2.1), (2.2) x′(t) has exactly i zeroes in (0, 1)};
F−

i = {(λ, µ)| x′′(0) < 0, the derivative of the nontrivial solution of the
problem(2.1), (2.2) x′(t) has exactly i zeroes in (0, 1)}.

Theorem 2.1 The Fučik spectrum for the problem (2.1), (2.2) consists of the branches
given by

F+
0 =

{
(λ, π)

}
,

F−
0 =

{
(π, µ)

}
,

F+
2i−1 =

{
(λ, µ)

∣∣∣ iπ

µ
+

iπ

λ
= 1

}
,

F+
2i =

{
(λ, µ)

∣∣∣ (i + 1)π

µ
+

iπ

λ
= 1

}
,

F−
2i−1 =

{
(λ, µ)

∣∣∣ iπ

µ
+

iπ

λ
= 1

}
,

F−
2i =

{
(λ, µ)

∣∣∣ iπ

µ
+

(i + 1)π

λ
= 1

}
,

where i = 1, 2, . . ..

Proof. Consider the problem (2.1), (2.2). We introduce the following notation

x′ = y,

then the problem (2.1), (2.2) reduces to the Fučik problem for the second order equation

y′′ = −µ2y+ + λ2y−, µ, λ ≥ 0, (2.3)

y+ = max{y, 0}, y− = max{−y, 0},
y(0) = 0 = y(1) (2.4)
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and one integration of y(t)

x(t) = x(0) +

t∫

0

x′(s)ds =

t∫

0

y(s)ds.

Notice that the problem (2.3), (2.6) is the classical Fučik problem, which was investigated
in the work [1]. Hence the spectrum of the problem (2.1), (2.2) is the same as that for
the second order Dirichlet problem that means that it consists of the branches described
by the formulae in the theorem formulation. ¤

Some first branches of the spectrum to the problem (2.1), (2.2) are depicted in Fig. 1.

Figure 1: The Fučik spectrum for the prob-
lem (2.1), (2.2).

Remark 2.1 If λ = µ we obtain the eigenvalue problem

x′′′ = −λ2x′, λ ≥ 0, (2.5)

x(0) = x′(0) = 0 = x′(1). (2.6)

It follows from the proof of Theorem 2.1 that the eigenvalues of the problem (2.5),
(2.6) are the same as the ones for the problem (2.1), (2.2). They are λn = πn, where
n = 1, 2, . . ..

Remark 2.2 Consider the fourth order boundary value problem

x(4) = −µ2x′′+ + λ2x′′−, µ, λ ≥ 0, (2.7)

x′′+ = max{x′′, 0}, x′′− = max{−x′′, 0},
x(0) = x′(0) = x′′(0) = 0 = x′′(1). (2.8)

The Fučik spectrum for this problem is a set of the points (λ, µ) such that the problem has
a nontrivial solution.

The Fučik spectrum for this problem is the same as that for the problem (2.1), (2.2).
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3 The third order problem with the boundary con-

ditions x(0) = x′(0) = 0 = x(1)

Consider the equation
x′′′ = −µ2x′+ + λ2x′−, µ, λ ≥ 0, (3.1)

x′+ = max{x′, 0}, x′− = max{−x′, 0},
with the boundary conditions

x(0) = x′(0) = 0 = x(1). (3.2)

Decomposition of the Fučik spectrum for the problem (3.1), (3.2) into branches F+
i and

F−
i (i = 1, 2, . . .) is the same as that for the problem (2.1), (2.2).

The next theorem is the main result of this work.

Theorem 3.1 The Fučik spectrum for the problem (3.1), (3.2) consists of the branches
given by

F+
2i−1 =

{
(λ, µ)

∣∣∣ 2iλ

µ
− (2i− 1)µ

λ
−

µ cos(λ− λπi
µ

+ πi)

λ
= 0,

iπ

µ
+

(i− 1)π

λ
< 1,

iπ

µ
+

iπ

λ
> 1

}
,

F+
2i =

{
(λ, µ)

∣∣∣ (2i + 1)λ

µ
− 2iµ

λ
− λ cos(µ− µπi

λ
+ πi)

µ
= 0,

iπ

µ
+

iπ

λ
< 1,

(i + 1)π

µ
+

iπ

λ
> 1

}
,

F−
2i−1 =

{
(λ, µ)

∣∣∣ 2iµ

λ
− (2i− 1)λ

µ
− λ cos(µ− µπi

λ
+ πi)

µ
= 0,

(i− 1)π

µ
+

iπ

λ
< 1,

iπ

µ
+

iπ

λ
> 1

}
,

F−
2i =

{
(λ, µ)

∣∣∣ (2i + 1)µ

λ
− 2iλ

µ
−

µ cos(λ− λπi
µ

+ πi)

λ
= 0,

iπ

µ
+

iπ

λ
< 1,

iπ

µ
+

(i + 1)π

λ
> 1

}
,

where i = 1, 2, . . ..

Proof. Consider the problem (3.1), (3.2). We will prove the theorem for the case of F+
1 .

Suppose that (λ, µ) ∈ F+
1 and let x(t) be a respective nontrivial solution of the problem

(3.1), (3.2). The derivative of this solution has only one zero in (0, 1). Let this zero be
denoted by τ.

Consider a solution of (3.1), (3.2) in the interval [0, τ ]. We obtain that the problem
(3.1), (3.2) in this interval reduces to the linear eigenvalue problem

x′′′ = −µ2x′, (3.3)
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x(0) = x′(0) = 0 = x(τ). (3.4)

Since x′(t) = C sin µt (C > 0) and x′(τ) = 0 we obtain τ = π
µ
. It is easy to see that

x(t) = C
µ
(1− cos µt) in [0, τ ]. We have also

x(
π

µ
) =

2C

µ
, (3.5)

x′′(
π

µ
) = −µC. (3.6)

Now we consider a solution of (3.1), (3.2) in [τ, 1]. We have in this interval linear
eigenvalue problem

x′′′ = λ2x′, (3.7)

x(τ) = 0 = x(1). (3.8)

Since x′(t) = −A sin(λt − λπ
µ
) (A > 0) and in view of (3.5) we obtain x(t) = 2C

µ
− A

λ
+

A
λ

cos(λt− λπ
µ
) in [τ, 1]. We have also that

x′′(
π

µ
) = λA. (3.9)

It follows from (3.6) and (3.9) that C = λA
µ

.
It follows from the last equality that

x(1) =
2λA

µ2
− A

λ
+

A cos(λ− λπ
µ

)

λ
= 0. (3.10)

Dividing (3.10) by A and multiplying by µ, we obtain

2λ

µ
− µ

λ
+

µ cos(λ− λπ
µ

)

λ
= 0. (3.11)

Considering the derivative of the solution of the (3.1), (3.2) it is easy to prove that

0 <
π

µ
< 1 <

π

µ
+

π

λ
.

The last result and (3.11) prove the theorem for the case of F+
1 . The proof for other

branches is analogous. ¤
Visualization of the spectrum to the problem (3.1), (3.2) is given in Figure 2.

Remark 3.1 If λ = µ we obtain the eigenvalue problem

x′′′ = −λ2x′, λ ≥ 0, (3.12)

x(0) = x′(0) = 0 = x(1). (3.13)

Easy computation shows that the eigenvalues of the problem (3.12), (3.13) are given
by λn = 2πn, where n = 1, 2, . . . .
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Figure 2: The Fučik spectrum for the problem
(3.1), (3.2).

Remark 3.2 The Fučik spectrum for the fourth order boundary value problem

x′′′′ = −µ2x′′+ + λ2x′′−, µ, λ ≥ 0, (3.14)

x′′+ = max{x′′, 0}, x′′− = max{−x′′, 0},
x(0) = x′(0) = x′′(0) = 0 = x′(1) (3.15)

is the same as that for the problem (3.1), (3.2).

Figure 3 shows some solutions which relate to points (λ, µ) on different branches of
the spectrum.

4 Connection between the spectra

Consider the third order equation

x′′′ = −µ2x′+ + λ2x′−, µ, λ ≥ 0, (4.1)

where x′+ = max{x′, 0}, x′− = max{−x′, 0} together with the boundary conditions

x(0) = x′(0) = 0; (4.2)

αx(1) + (1− α)x′(1) = 0, α ∈ [0, 1]. (4.3)
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Figure 3: Some solutions of the problem (3.1), (3.2)

Theorem 4.1 The Fučik spectrum for the problem (4.1) – (4.3) consists of the branches
given by

F+
2i−1 =

{
(λ, µ)

∣∣∣ 2iλ

µ
α− (2i− 1)µ

λ
α−

−
µ(α cos(λ− λπi

µ
+ πi)− λ sin(λ− λπi

µ
+ πi) + αλ sin(λ− λπi

µ
+ πi))

λ
= 0,

iπ

µ
+

(i− 1)π

λ
< 1,

iπ

µ
+

iπ

λ
> 1

}
,

F+
2i =

{
(λ, µ)

∣∣∣ (2i + 1)λ

µ
α− 2iµ

λ
α;

−λ(α cos(µ− µπi
λ

+ πi)− µ sin(µ− µπi
λ

+ πi) + αµ sin(µ− µπi
λ

+ πi))

µ
= 0,

iπ

µ
+

iπ

λ
< 1,

(i + 1)π

µ
+

iπ

λ
> 1

}
,

F−
2i−1 =

{
(λ, µ)

∣∣∣ 2iµ

λ
α− (2i− 1)λ

µ
α−

−λ(α cos(µ− µπi
λ

+ πi)− µ sin(µ− µπi
λ

+ πi) + αµ sin(µ− µπi
λ

+ πi))

µ
= 0,

(i− 1)π

µ
+

iπ

λ
< 1,

iπ

µ
+

iπ

λ
> 1

}
,

F−
2i =

{
(λ, µ)

∣∣∣ (2i + 1)µ

λ
α− 2iλ

µ
α−

−
µ(α cos(λ− λπi

µ
+ πi)− λ sin(λ− λπi

µ
+ πi) + αλ sin(λ− λπi

µ
+ πi))

λ
= 0,

iπ

µ
+

iπ

λ
< 1,

iπ

µ
+

(i + 1)π

λ
> 1

}
,

where i = 1, 2, . . ..
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Proof. The proof of the theorem is analogous to that of the theorem 3.1. ¤

Remark 4.1 If α = 0 we obtain the problem (2.1), (2.2). In case of α = 1 we have the
problem (3.1), (3.2).

The branches F±
1 to F±

5 of the spectrum for the problem (4.1) – (4.3) for several values
of α are depicted in Figure 4.

α = 1
2

α = 3
4

α = 8
9

α = 19
20

Figure 4: The Fučik spectrum for the problem (4.1) - (4.3) for some values of α
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Í. Ñåðãååâà. Ñïåêòðû Ôó÷èêà äëÿ óðàâíåíèé òðåòüåãî è ÷åòâåðòîãî
ïîðÿäêà.

Àííîòàöèÿ. Íàìè ïîñòðîåíû ñïåêòðû Ôó÷èêà äëÿ íåêîòîðûõ ñïåöèôè÷åñêèõ
äèôôåðåíöèàëüíûõ óðàâíåíèé òðåòüåãî è ÷åòâåðòîãî ïîðÿäêîâ. Íàøè ñïåêòðû îòëè-
÷àþòñÿ îò èçâåñòíûõ.
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