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On nonlinear eigenvalue problems
A. Gritsans and F. Sadyrbaev

Summary. We consider the second order nonlinear eigenvalue problems depending
on one or two parameters. First we are looking for positive solutions of equations x′′ =
−f(x) and x′′ = −λf(x), which are considered together with the Dirichlet boundary
conditions x(0) = 0, x(1) = 0, (i). Function f(x) is supposed to be convex. The
relation between the parameter λ and the Nehari number λ0(0, 1) is established ([1], [4]).
Fučik like nonlinear problem is treated for equation x′′ = −λf(x) + µg(x). We construct
the set of points (λ, µ) such that this equation has a nontrivial normalized (by a condition
x′(0) = 1) solution which satisfies the boundary conditions (i).
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1 Introduction

We consider autonomous equations of the type

x′′ = −f(x), (1)

x′′ = −λf(x), (2)

and
x′′ = −λf(x) + µg(x), (3)

where λ and µ are parameters, together with the boundary conditions

x(0) = 0, x(1) = 0. (4)

The functions f(x) and g(x) are positive valued continuous functions, defined on the
half-axes [0, +∞) and (−∞, 0] respectively.

In the first case then x′′(t) ≤ 0 for a possible solution x and x(t) is either zero or
x(t) > 0 for t ∈ (0, 1). We are interested in the number of solutions for the problem (1),
(4).

The problem (2), (4) was investigated by Laetsch [6] who was looking for λ such that
the problem had a positive solution.

The third problem is in some sense generalization of the problem investigated by
Laetsch and that of the classical two-parameter Fučik type eigenvalue problem.
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2 The first problem

Consider the problem (1), (4), where f : [0, +∞) → [0, +∞) is a continuous function. It
easily can be seen that if f(0) = 0, then x(t) ≡ 0 is a solution of the problem. Otherwise
it has not the trivial solution.

Proposition 2.1 Any nontrivial solution of the problem (1), (4) satisfies the condition

x(t) > 0, ∀t ∈ (0, 1), (5)

it is symmetric with respect to the critical point t = 1
2
, where it attains its maximal value.

The proof can be found in [5].

Proposition 2.2 (Lemma 2.1 in [5]) If f ∈ C1([0, 1], [0, +∞)), there are two positive
solutions u and v of the problem (1), (4), then either u(t) < v(t) for t ∈ (0, 1) or vice
versa.

We would like to give slightly modified proof of this result.
Proof. Suppose that v(t) > u(t) in some right vicinity of t = 0. Then v′(0) > u′(0) >

0. If v(t) > u(t) for t ∈ (0, 1
2
], then the proof is completed. Suppose this is not the case

and there exists ξ ∈ (0, 1
2
] such that v(ξ) = u(ξ) and v(t) > u(t) for t ∈ (0, ξ). Notice that

0 ≤ v′(ξ) < u′(ξ) then.
Introduce the primitive F (z) =

∫ z

0
f(s) ds. We multiply the equation u′′ + f(u) = 0

by 2u′ and integrate it over the interval (0, ξ) :

∫ ξ

0

d(u′2 + 2F (u)) = u′2(ξ) + 2F (u(ξ))− u′2(0)− 2F (u(0)) = u′2(ξ) + 2F (u(ξ))− u′2(0).

Repeating this procedure with respect to the function v(t), one gets

∫ ξ

0

d(v′2 + 2F (v)) = v′2(ξ) + 2F (v(ξ))− v′2(0).

Since F (u(ξ)) = F (v(ξ)) and v′2(ξ) < u′2(ξ), it follows that v′2(0) < u′2(0). A contradic-
tion.

Proposition 2.3 Suppose that the function f(x) in (1) is convex, that is,

f(v)− f(u)

v − u
≤ f(w)− f(u)

w − u
(6)

for any 0 ≤ u < v < w.
Then, for any three solutions u(t), v(t) and w(t) of the equation (1) such that

u(t) ≤ v(t) ≤ w(t) ∀t ∈ [0, 1] (7)

the function
Φ(t) := (w − v)(v′ − u′)− (v − u)(w′ − v′) (8)

is strictly increasing in [0, 1] function except when equation (1) is linear.
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The above proposition is Lemma 1 in [8], adapted for our purposes. The proof is short,
so let us show it here.

Proof. It is easily confirmed that

Φ′(t) = (w − v)(v′′ − u′′)− (v − u)(w′′ − v′′)
= (v − u)(f(w)− f(v))− (w − v)(f(v)− f(u)).

Then, for any 0 ≤ t1 < t2 ≤ 1,

Φ(t2)− Φ(t1) =

∫ t2

t1

[(v − u)(f(w)− f(v))− (w − v)(f(v)− f(u))] dt. (9)

Since u < v < w and f(x) is convex, we have

f(v)− f(u)

v − u
≤ f(w)− f(u)

w − u

with equality only if the points (u, f(u)), (v, f(v)), (w, f(w)) lie on a straight line. It
follows that the integrand in (9) is positive unless f(x) is linear. This completes the
proof.

Corollary 2.1 (Lemma II in [8]) Let f(x) be convex. If u(t), v(t), w(t) are solutions
of (1) such that u(t) < w(t) and v(t) < w(t) in [0, 1], then the curves ξ = u(t) and
η = v(t) cannot intersect in [0, 1] more than once.

Proof. If there are more points of intersection there will exist two points 0 ≤ t1 <
t2 ≤ 1 such that u(t1) = v(t1) and u(t2) = v(t2) and, say, v(t) > u(t) in (t1, t2). If Φ(t) is
the expression defined in (8), we then have

Φ(t1) = [w(t1)− v(t1)][v
′(t1)− u′(t1)] > 0,

and
Φ(t1) = [w(t2)− v(t2)][v

′(t2)− u′(t2)] < 0.

This contradicts Proposition 2.3 and thus proves the corollary.
Thus, the boundary value problem (1), (4) may have multiple positive solutions, if

f(x) is not convex. The trivial example can be given by f(x) = π2x (infinitely many
solutions). There are also equations of the form (1), which have countably many solutions
which satisfy the boundary conditions (4).

Theorem 2.1 If f ∈ C1 in (1) is convex and f(0) = 0, then the problem (1), (4) has at
most one positive solution.

Proof. Follows from propositions 2.2 and 2.3.
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3 The second problem

In this section we consider the eigenvalue problem (2), (4). Let us call λ by the Laetsch
parameter. It can be seen easily that if this problem is solvable then λ is positive and the
respective positive solution is symmetric with respect to the middle point t = 1

2
, where

the maximal value is attained.
If f(0) = 0, then by the results of Section 1, only one positive solution is possible for

any λ > 0, if f ∈ C1 is convex.

Proposition 3.1 Consider equation

x′′ = −λxx2α, α > 0, x ≥ 0 (10)

together with the boundary conditions (4). Let ‖x‖ := max[0,1] x(t), where x(t) is the only
positive solution of (3.1), (10) for a given λ > 0.

Then
‖x‖α ·

√
λ = 2

√
α + 1 · Aα, (11)

where

Aα =

∫ 1

0

dξ√
1− ξ2α+2

. (12)

Proof. One gets, using the standard technique and following the notation by Laetsch
[6], that

x′2 = − 1

α + 1
λx2α+2 +

1

α + 1
λ‖x‖2α+2.

Then
dx

dt
=

√
1

α + 1
λ‖x‖2α+2 − 1

α + 1
λx2α+2

and, after integration in the interval of positivity of x′(t), one has

√
λ

α + 1
t =

∫ x(t)

0

ds√
‖x‖2α+2 − s2α+2

or
1

2

√
λ

α + 1
=

1

‖x‖α

∫ 1

0

dξ√
1− ξ2α+2

(13)

Thus λ and x(t) are connected by the relation

‖x‖α ·
√

λ = 2
√

α + 1 · Aα, (14)

which completes the proof.
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4 Nehari equations

The Nehari theory, when restricted to autonomous equations, deals with equation

x′′ = −xF (x2), (15)

where

• F (s) is continuous for s ≥ 0;

• F (s) > 0 for s > 0;

• there exists ε > 0 such that
F (s)

sε
is non-decreasing.

Since F satisfies the condition (A3), the right side in (15) is a convex function, as well as
the right side in

x′′ = −λxF (x2), (16)

where λ is supposed to be positive.
Let us consider equation (17), to which the Nehari theory is applicable. If F (s) = sα,

then equation (17) takes the form of the Emden - Fowler equation

x′′ = −λxx2α, α > 0 (17)

with a Laetsch parameter. Since the function xx2α is continuously differentiable and
convex for x ≥ 0, there exists exactly one positive solution for any λ > 0. The relation
between λ and ‖x‖ was established in the preceding section.

On the other hand, for any λ > 0 there exists the so called Nehari number λ1, which
coincides with the minimal value of the functional

H(x) =

∫ b

a

[
x′2 − λ(1 + α)−1x2+2α

]
dt → inf (18)

over all positive solutions of the problem (17), (4). Generally the Nehari number λn is
the minimal value of the functional over all solutions of the problem (17), (4), which have
exactly n − 1 zeros in (a, b). Since there is only one positive solution, it furnishes the
minimal value to the functional. This solution and the value of the functional can be
computed in order to get λ1.

In the next proposition the relation between λ and λ1 is established.

Proposition 4.1 The Nehari number λ1 and the Laetsch parameter λ are connected by
the relation

λ1 =
α(α + 1)

1
α

α + 2
(2Aα)

2α+2
α λ−

1
α (19)

where Aα is given in (12).
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Proof. It was shown in [4] that the Nehari numbers λn for the problem

x′′ = − k

(pt + q)2ε+4
x2εx, x(a) = 0, x(b) = 0

where pt + q > 0 in the interval [a; b] (0 ≤ a < b) and k > 0, are given by

λn(a, b) =
ε(ε + 1)

1
ε

ε + 2
(2Aεn)

2ε+2
ε k−

1
ε

(
(pa + q)(pb + q)

b− a

) ε+2
ε

, (2)

where Aε =
1∫
0

du√
1−u2ε+2 . For the specific choice of k = λ, pt + q ≡ 1, a = 0, b = 1, n = 1

one obtains the formula (19).

5 The third problem in a specific form

Consider now the problem (3), (4), which can be written also as

x′′ =
{ −λf(x), if x ≥ 0

µg(x), if x ≤ 0,
x(0) = x(1) = 0. (20)

If f(x) = max{x, 0} and g(x) = max{−x, 0}, then one has the famous Fučik problem.
The nonlinear generalization of this problem was considered in [7] for cubic nonlinearities.
The spectrum obtained was very similar to the classical Fučik spectrum, at least with
respect to the structure.

Let us consider the specific case of

x′′ =
{ −λx2αx, if x ≥ 0
−µx2βx, if x ≤ 0,

x(0) = x(1) = 0, (21)

where λ ≥ 0 and µ ≥ 0; α > 0 un β > 0.
In order to get reasonable problem we have to impose the normalization condition

|x′(0)| = 1.
Definition. By the Fučik spectrum for the problem (20) is meant a set of all points

(λ ≥ 0, µ ≥ 0) such that the problem has a nontrivial solution.
Consider the auxiliary problem

x′′ = −λx2αx, x(0) = 0, x′(0) = 1. (22)

Let Tα be the first zero of x(t) for t > 0. Introduce the notation ‖x‖ = max{x(t) : 0 ≤
t ≤ Tα} and notice that ‖x‖ = x(Tα/2) and x′(Tα) = −1.

Lemma 5.1 It is true that

Tα = 2
(α + 1)

1
2α+2

λ
1

2α+2

Aα (23)

where Aα is given by (12).
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Proof. By standard computation, multiplying both sides of the equation in (22) by
2x′ and integrating from 0 to Tα/2.

Therefore Tα → 0 as λ → +∞.

Theorem 5.1 The spectrum of the problem (21) consists of a set of curves F+
0 , F−

0 , F+
2i ,

F−
2i , and F+

2i−1, F−
2i−1, (i = 1, 2, . . .), given by:

F+
0 =

{(
(2Aα)2α+2(α + 1); µ

)
: µ ≥ 0

}
, (24)

F−
0 =

{(
λ; (2Aβ)2β+2(β + 1)

)
: λ ≥ 0

}
, (25)

F+
2i−1 =

{
(λ; µ) :

2iAα(α + 1)
1

2α+2

λ
1

2α+2

+
2iAβ(β + 1)

1
2β+2

µ
1

2β+2

= 1

}
, (26)

F−
2i−1 =

{
(λ; µ) :

2iAβ(β + 1)
1

2β+2

µ
1

2β+2

+
2iAα(α + 1)

1
2α+2

λ
1

2α+2

= 1

}
, (27)

F+
2i =

{
(λ; µ) :

2(i + 1)Aα(α + 1)
1

2α+2

λ
1

2α+2

+
2iAβ(β + 1)

1
2β+2

µ
1

2β+2

= 1

}
, (28)

F−
2i =

{
(λ; µ) :

2(i + 1)Aβ(β + 1)
1

2β+2

µ
1

2β+2

+
2iAα(α + 1)

1
2α+2

λ
1

2α+2

= 1

}
, (29)

where

Aα =

1∫

0

dt√
1− t2α+2

, Aβ =

1∫

0

dt√
1− t2β+2

.

Corollary 5.1 The branches F+
2i−1 and F−

2i−1 coincide (i = 1, 2, . . .).

Proof of the theorem. Consider the equation in (21) together with the initial
conditions

x(0) = 0, x′(0) = 1. (30)

We are looking for a positive solution of the problem (21). This solution solves the
auxiliary problem (22), where λ can be found from the relation Tα = 1. It follows from
(23) that

λ = (2Aα)2α+2(α + 1).

Thus the expression for (24) is valid.
In order to get the formula for the curve F−

0 one should look for a negative solution
of the problem

x′′ = −µx2βx, x(0) = 0, x(1) = 0.

This is equivalent to the problem

y′′ = −µy2βy, y(0) = 0, y(1) = 0, y(t) is positive in (0, 1).
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Up to the notation this is the above problem and one gets by resolving the equation
Tµ = 1 that

µ = (2Aβ)2β+2(β + 1).

Thus the expression (25) is valid.
In order to prove (26) one should consider the equation in (21) together with the initial

conditions (30). We are looking for solutions which are zero at the end points and have
exactly 2i − 1 zeros tk in (0, 1). Notice that all these zeros are simple and |x′(tk)| = 1.
In the intervals of positivity a solution x(t) satisfies x′′ = −λx2αx and in the intervals of
negativity x(t) is a solution of x′′ = −µx2βx. The key relation is

Tα + Tβ + . . . + Tα + Tβ = iTα + iTβ = 1. (31)

Formula (26) follows from (31) and (23).
Similarly (27), (28) and (29) follow from the key relations

Tβ + Tα + . . . + Tβ + Tα = iTβ + iTα = 1,

Tα + Tβ + . . . + Tβ + Tα = (i + 1)Tα + iTβ = 1

and
Tβ + Tα + . . . + Tα + Tβ = iTα + (i + 1)Tβ = 1.

6 Unified approach to superlinear and sublinear cases

Consider the Dirichlet problem [(i, λ, α), (j, µ, β)]:

x′′ =
{ −λf i

α(x), if x ≥ 0,

−µf j
β(x), if x ≤ 0,

x(0) = x(1) = 0,

where i, j ∈ {↑; ↓}, α > 0, β > 0 and

f ↑α(x) = x2αx, f ↓β(x) = |x| 1
2α+1 sign x.

The notation above allows to describe in a unified manner the following cases:

• ↑ + ↑ super+super

x′′ =
{ −λf ↑α(x), if x ≥ 0,

−µf ↑β(x) if x ≤ 0,
x(0) = x(1) = 0,

• ↑ + ↓ super+sub

x′′ =
{ −λf ↑α(x), if x ≥ 0,

−µf ↓β(x) if x ≤ 0,
x(0) = x(1) = 0,

• ↓ + ↑ sub+super

x′′ =
{ −λf ↓α(x), if x ≥ 0,

−µf ↑β(x) if x ≤ 0,
x(0) = x(1) = 0,
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• ↓ + ↓ sub+sub

x′′ =
{ −λf ↓α(x), if x ≥ 0,

−µf ↓β(x) if x ≤ 0,
x(0) = x(1) = 0.

Let us denote:

A↑
α =

1∫

0

dt√
1− t2α+2

, A↓
α =

1∫

0

dt√
1− t

2α+2
2α+1

.

T ↑
λ,α =

2A↑
α(α + 1)

1
2α+2

λ
1

2α+2

, T ↓
λ,α =

2A↓
α

(
α+1
2α+1

) 2α+1
2α+2

λ
2α+1
2α+2

.

Theorem 6.1 The Fuchik spectrum for the problem [(i, λ, α), (j, µ, β)] consists of the
curves:

No zeros in the interval (0; 1).

↑,jF+
0 =

{(
(T ↑

1,α)2α+2; µ
)

: µ ≥ 0
}

.

i,↑F−
0 =

{(
λ; (T ↑

1,β)2β+2
)

: λ ≥ 0
}

.

↓,jF+
0 =

{(
(T ↓

1,α)
2α+2
2α+1 ; µ

)
: µ ≥ 0

}
.

i,↓F−
0 =

{(
λ; (T ↓

1,β)
2β+2
2β+1

)
: λ ≥ 0

}
.

Odd number of zeros 2k − 1 in the interval (0; 1).

i,jF+
2k−1 =

{
(λ; µ) : kT i

λ,α + kT j
µ,β = 1

}
.

i,jF−
2k−1 =

{
(λ; µ) : kT i

λ,α + kT j
µ,β = 1

}
.

Here k = 1, 2, . . .. It is clear that i,jF+
2i−1 = i,jF−

2i−1.

Even number of zeros 2k in the interval (0; 1).

i,jF+
2i =

{
(λ; µ) : (k + 1)T i

λ,α + kT j
µ,β = 1

}
.

i,jF−
2i =

{
(λ; µ) : kT i

λ,α + (k + 1)T j
µ,β = 1

}
.

Here k = 1, 2, . . ..
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À. Ãðèöàíñ, Ô. Ñàäûðáàåâ. Î íåëèíåéíûõ çàäà÷àõ íà ñîáñòâåííûå çíà-
÷åíèÿ.

Àííîòàöèÿ. Ðàññìàòðèâàþòñÿ íåëèíåéíûå óðàâíåíèÿ ñ îäíèì è äâóìÿ ïàðàìåò-
ðàìè. Ñíà÷àëà ïðèâîäÿòñÿ óñëîâèÿ ñóùåñòâîâàíèÿ ïîëîæèòåëüíîãî ðåøåíèÿ óðàâ-
íåíèé x′′ = −f(x) è x′′ = −λf(x), ðàññìàòðèâàåìûõ âìåñòå ñ êðàåâûìè óñëîâèÿìè
x(0) = 0, x(1) = 0, (i). Ôóíêöèÿ f(x) ïðåäïîëàãàåòñÿ âîãíóòîé. Óñòàíàâëèâàåòñÿ
ñîîòíîøåíèå ìåæäó ïàðàìåòðîì λ è ÷èñëîì Íåõàðè λ1(0, 1) ([1], [4]). Äëÿ óðàâíåíèÿ
x′′ = −λf(x)+µg(x) ðàññìàòðèâàåòñÿ íåëèíåéíàÿ çàäà÷à òèïà Ôó÷èêà. Îïèñûâàåòñÿ
ìíîæåñòâî òî÷åê (λ, µ) òàêèõ, ÷òî ñóùåñòâóåò íåòðèâèàëüíîå íîðìèðîâàííîå (x′(0) =
1) ðåøåíèå, óäîâëåòâîðÿþùåå óñëîâèÿì (i).

ÓÄÊ 517.91

A. Gricāns, F. Sadirbajevs. Par nelineāram ı̄pašvērt̄ıbu problēmām.
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Anotācija. Tiek apskat̄ıti nelineāri diferenciālvienādojumi ar vienu un diviem parame-
triem. Sākumā doti nosac̄ıjumi pozit̄ıva atrisinājuma eksistencei vienādojumiem x′′ =
−f(x) un x′′ = −λf(x), kuri tiek apskat̄ıti kopā ar robežnosac̄ıjumiem x(0) = 0, x(1) = 0.
Iegūta sakar̄ıba starp parametru λ un Nehari skaitli λ1(0, 1) ([1], [4]). Vienādojumam
x′′ = −λf(x) + µg(x) tiek pēt̄ıta nelineāra Fučika tipa problēma. Tiek aprakst̄ıta tāda
punktu (λ, µ) kopa, ka eksistē netriviāls normēts (x′(0) = 1) atrisinājums.
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