Fuchik spectrum for the second order Sturm-Liouville boundary value problem ${ }^{1}$

Tatjana Garbuza

Summary. We provide the explicit formulas for the Fuchik spectrum of the boundary value problem

$$
\begin{gathered}
x^{\prime \prime}=-\mu^{2} x^{+}+\lambda^{2} x^{-}, \\
\mu, \lambda \in \mathbb{R}, \quad x^{ \pm}(t)=\max \{ \pm x, 0\}, \\
\left\{\begin{array}{l}
x(0) \cos \alpha-x^{\prime}(0) \sin \alpha=0, \\
x(\pi) \cos \beta-x^{\prime}(\pi) \sin \beta=0 .
\end{array}\right.
\end{gathered}
$$

1991 MSC primary 34B15, secondary 34C23

Introduction

We consider the equation with the piece-wise linear right side

$$
\begin{equation*}
x^{\prime \prime}=-\mu^{2} x^{+}+\lambda^{2} x^{-}, \quad \mu, \lambda \in \mathbb{R} \tag{1}
\end{equation*}
$$

where $x^{ \pm}(t)=\max \{ \pm x, 0\}$, with the Sturm-Liouville boundary conditions

$$
\left\{\begin{array}{l}
x(0) \cos \alpha-x^{\prime}(0) \sin \alpha=0 \tag{2}\\
x(\pi) \cos \beta-x^{\prime}(\pi) \sin \beta=0
\end{array}\right.
$$

where $0 \leq \alpha \leq \frac{\pi}{2} \leq \beta \leq \pi$. We are looking for those values of (λ, μ) for which the problem has a nontrivial solution.

Definition. By the Fuchik spectrum for the problem (1), (2) is called the set of all values (λ, μ) such that a nontrivial solution for the problem (1), (2) exists.

In this paper we show that the spectrum of the problem (1), (2) is a collection of curves and we obtain the formulas for the spectrum. We show that the branches of the spectrum are hyperbolas or straight lines, which are denoted by F_{n}^{+}and F_{n}^{-}, where the

[^0]lower index indicates how many zeros in the interval $(0, \pi)$ has the respective solution $x(t)$ of (1), (2) and the upper index $(+)$ shows that $x^{\prime}(0)>0$, respectively $(-)$ shows that $x^{\prime}(0)<0$.

The paper is organized as follows. Section 1 provides auxiliary results and describes the technique we used in the sequel. Section 2 is devoted to the main results. In Section 3 we discuss the specific cases, namely, the Neumann boundary conditions, the mixed boundary conditions etc.

All the other cases of ordering of α and β are considered in the author's Master work (see [2]).

1 Auxiliary results

Our technique is based on a regular usage of polar coordinates. Let us introduce them by the formulas $x=\rho \sin \varphi$ and $x^{\prime}=\rho \cos \varphi$.

The piece-wise linear function $f(x)=-\mu^{2} x^{+}+\lambda^{2} x^{-}$, in polar coordinates looks as

$$
f(\rho, \varphi)= \begin{cases}-\mu^{2} \rho \sin \varphi, & \sin \varphi \geq 0 \tag{3}\\ -\lambda^{2} \rho \sin \varphi, & \sin \varphi<0\end{cases}
$$

Proposition 1.1 Let $\varphi(t)$ be the angle function for solutions of the Cauchy problem (1), $\varphi(0)=\varphi_{0}, \rho(0)=\rho_{0}$. The difference $\varphi(T)-\varphi(0)$ is independent of the choice of $\rho_{0}>0$, that is, any trajectory starting at the time moment $t=0$ from the first of the straight lines (2) on a phase plane, ends at some other straight line $x(T) \cos \varphi(T)-x^{\prime}(T) \sin \varphi(T)=0$.

Proof. We differentiate $x=\rho \sin \varphi$ and $x^{\prime}=\rho \cos \varphi$ in t, and obtain

$$
\begin{aligned}
& x^{\prime}=\rho^{\prime} \sin \varphi+\rho \varphi^{\prime} \cos \varphi, \\
& x^{\prime \prime}=\rho^{\prime} \cos \varphi-\rho \varphi^{\prime} \sin \varphi .
\end{aligned}
$$

One obtains from (1) and $x^{\prime}=\rho \cos \varphi$ the system of two equations:

$$
\left\{\begin{array}{l}
\rho^{\prime} \sin \varphi+\rho \varphi^{\prime} \cos \varphi=\rho \cos \varphi \\
\rho^{\prime} \cos \varphi-\rho \varphi^{\prime} \sin \varphi=f(\rho, \varphi)
\end{array}\right.
$$

Finally one has the system:

$$
\left\{\begin{array}{l}
\rho^{\prime}=\rho \sin \varphi \cos \varphi+f(\rho, \varphi) \cos \varphi \\
\varphi^{\prime}=-\frac{f(\rho, \varphi)}{\rho} \sin \varphi+\cos ^{2} \varphi
\end{array}\right.
$$

Let us rewrite the second equation in the form

$$
\varphi^{\prime}=F(\varphi)= \begin{cases}\mu^{2} \sin ^{2} \varphi+\cos ^{2} \varphi, & \sin \varphi \geq 0 \tag{4}\\ \lambda^{2} \sin ^{2} \varphi+\cos ^{2} \varphi, & \sin \varphi<0\end{cases}
$$

As can be seen from (4), the derivative of $\varphi(t)$ is independent of $\rho(t)$. Notice that the function $\varphi(t)$ is increasing, since $\varphi^{\prime}>0$.

Proposition 1.2 A solution of the problem

$$
\left\{\begin{array}{l}
\varphi^{\prime}=k^{2} \sin ^{2} \varphi+\cos ^{2} \varphi, k>0 \\
\varphi\left(t_{0}\right)=\varphi_{0}
\end{array}\right.
$$

is given by

$$
\frac{1}{k} \arctan (k \tan \varphi)-\frac{1}{k} \arctan \left(k \tan \varphi_{0}\right)=t-t_{0}
$$

for $0 \leq \varphi_{0} \leq \varphi \leq \frac{\pi}{2}$ or $\frac{\pi}{2} \leq \varphi_{0} \leq \varphi \leq \pi$, and it is given by

$$
\frac{1}{k} \arctan (k \tan \varphi)+\frac{\pi}{k}-\frac{1}{k} \arctan \left(k \tan \varphi_{0}\right)=t-t_{0}
$$

for $0 \leq \varphi_{0}<\frac{\pi}{2}<\varphi \leq \pi$.
Proof. Consider

$$
\frac{d \varphi}{d t}=k^{2} \sin ^{2} \varphi+\cos ^{2} \varphi, \quad \frac{d \varphi}{k^{2} \sin ^{2} \varphi+\cos ^{2} \varphi}=d t .
$$

One has, after integration, that

$$
\int_{\varphi_{0}}^{\varphi} \frac{d \varphi}{k^{2} \sin ^{2} \varphi+\cos ^{2} \varphi}=\int_{t_{0}}^{t} d t
$$

or

$$
\begin{aligned}
t-t_{0}=\int_{\varphi_{0}}^{\varphi} \frac{d \varphi}{k^{2} \sin ^{2} \varphi+\cos ^{2} \varphi}=\int_{\varphi_{0}}^{\varphi} \frac{\frac{d \varphi}{\cos ^{2} \varphi}}{k^{2} \tan ^{2} \varphi+1}=\frac{1}{k} \int_{\varphi_{0}}^{\varphi} \frac{d(k \tan \varphi)}{(k \tan \varphi)^{2}+1}= \\
=\left.\frac{1}{k} \arctan (k \tan \varphi)\right|_{\varphi_{0}} ^{\varphi}=\frac{1}{k} \arctan (k \tan \varphi)-\frac{1}{k} \arctan \left(k \tan \varphi_{0}\right)
\end{aligned}
$$

Consider the case when there is a value $\varphi_{*}=\frac{\pi}{2}$ in the interval $\left(\varphi_{0} ; \varphi\right)$. Then the integral in the right side

$$
\int_{t_{0}}^{t} d t=\int_{\varphi_{0}}^{\varphi} \frac{d \varphi}{k^{2} \sin ^{2} \varphi+\cos ^{2} \varphi}
$$

reduces to the sum of two improper integrals:

$$
\begin{gathered}
t-t_{0}=\frac{1}{k} \int_{\varphi_{0}}^{\varphi} \frac{d(k \tan \varphi)}{(k \tan \varphi)^{2}+1}=\frac{1}{k}\left(\int_{\varphi_{0}}^{\frac{\pi}{2}} \frac{d(k \tan \varphi)}{(k \tan \varphi)^{2}+1}+\int_{\frac{\pi}{2}}^{\varphi} \frac{d(k \tan \varphi)}{(k \tan \varphi)^{2}+1}\right)= \\
=\frac{1}{k}\left(\lim _{\varepsilon_{1} \rightarrow 0} \int_{\varphi_{0}}^{\frac{\pi}{2}-\varepsilon_{1}} \frac{d(k \tan \varphi)}{(k \tan \varphi)^{2}+1}+\lim _{\varepsilon_{2} \rightarrow 0} \int_{\frac{\pi}{2}+\varepsilon_{2}}^{\varphi} \frac{d(k \tan \varphi)}{(k \tan \varphi)^{2}+1}\right)= \\
=\frac{1}{k}\left(\lim _{\varepsilon_{1} \rightarrow 0}\left[\arctan \left(k \tan \left(\frac{\pi}{2}-\varepsilon_{1}\right)\right)-\arctan \left(k \tan \varphi_{0}\right)\right]+\right. \\
\left.+\lim _{\varepsilon_{2} \rightarrow 0}\left[\arctan (k \tan \varphi)-\arctan \left(k \tan \left(\frac{\pi}{2}+\varepsilon_{2}\right)\right)\right]\right)= \\
=\frac{1}{k}\left(\frac{\pi}{2}-\arctan \left(k \tan \varphi_{0}\right)+\arctan (k \tan \varphi)+\frac{\pi}{2}\right)= \\
=\frac{1}{k} \arctan (k \tan \varphi)+\frac{\pi}{k}-\frac{1}{k} \arctan \left(k \tan \varphi_{0}\right) .
\end{gathered}
$$

Proposition 1.3 The equality

$$
\int_{\alpha}^{\beta} \frac{d \varphi}{k^{2} \sin ^{2} \varphi+\cos ^{2} \varphi}=\int_{\alpha+\pi}^{\beta+\pi} \frac{d \varphi}{k^{2} \sin ^{2} \varphi+\cos ^{2} \varphi} \quad \text { holds for any } \alpha \text { and } \beta .
$$

Proof. The proof follows from periodicity of the function $\sin ^{2} \varphi$ and $\cos ^{2} \varphi$.
Let us interpret the Sturm-Liouville boundary conditions (2) on a phase plane. From (2) we have

$$
\begin{array}{ll}
\frac{x(0)}{x^{\prime}(0)}=\tan \alpha, & \varphi_{0}=\alpha, \\
\frac{x(\pi)}{x^{\prime}(\pi)}=\tan \beta, & \text { and }
\end{array} \quad \varphi_{1}=\beta+\pi n, \text { for some } n \in \mathbb{N} .
$$

where $\varphi_{0}=\varphi(0)$ un $\varphi_{1}=\varphi(\pi)$. See Fig. 1.

2 Main results

Czech mathematician S. Fuchik in 70-th of the XX-th century formulated and solved a number of problems which relate to the theory of nonlinear differential equations depending on two parameters. The second order Dirichlet boundary value problem was considered in the book ([1]).

The spectrum for the Fuchik problem consists of separate curves.
We consider now the more general case.

Figure 1: The Sturm-Liouville boundary conditions on a phase plane.
Theorem 2.1 The spectrum of the problem (1), (2) for the case of $0 \leq \alpha \leq \frac{\pi}{2} \leq \beta \leq \pi$ consists of separate branches

$$
\begin{gathered}
F_{0}^{+}: \frac{1}{\mu} \arctan (\mu \tan \beta)+\frac{\pi}{\mu}-\frac{1}{\mu} \arctan (\mu \tan \alpha)=\pi, \\
F_{0}^{-}: \frac{1}{\lambda} \arctan (\lambda \tan \beta)+\frac{\pi}{\lambda}-\frac{1}{\lambda} \arctan (\lambda \tan \alpha)=\pi, \\
F_{2 k}^{+}:\left[\frac{\pi}{\mu}-\frac{1}{\mu} \arctan (\mu \tan \alpha)\right]+\frac{(k-1) \pi}{\mu}+\frac{k \pi}{\lambda}+\left[\frac{\pi}{\mu}+\frac{1}{\mu} \arctan (\mu \tan \beta)\right]=\pi, \\
F_{2 k}^{-}:\left[\frac{\pi}{\lambda}-\frac{1}{\lambda} \arctan (\lambda \tan \alpha)\right]+\frac{k \pi}{\mu}+\frac{(k-1) \pi}{\lambda}+\left[\frac{\pi}{\lambda}+\frac{1}{\lambda} \arctan (\lambda \tan \beta)\right]=\pi, \\
F_{2 k-1}^{+}:\left[\frac{\pi}{\mu}-\frac{1}{\mu} \arctan (\mu \tan \alpha)\right]+\frac{(k-1) \pi}{\mu}+\frac{(k-1) \pi}{\lambda}+\left[\frac{\pi}{\lambda}+\frac{1}{\lambda} \arctan (\lambda \tan \beta)\right]=\pi, \\
F_{2 k-1}^{-}:\left[\frac{\pi}{\lambda}-\frac{1}{\lambda} \arctan (\lambda \tan \alpha)\right]+\frac{(k-1) \pi}{\mu}+\frac{(k-1) \pi}{\lambda}+\left[\frac{\pi}{\mu}+\frac{1}{\mu} \arctan (\mu \tan \beta)\right]=\pi . \\
\forall k \in \mathbb{N}, \quad \lambda>0, \quad \mu>0 .
\end{gathered}
$$

Proof. One can find spectrum of the problem (1), (2) by resolving the equation

$$
\varphi^{\prime}= \begin{cases}\mu^{2} \sin ^{2} \varphi+\cos ^{2} \varphi, & \text { if } \quad \sin \varphi \geq 0 \tag{5}\\ \lambda^{2} \sin ^{2} \varphi+\cos ^{2} \varphi, & \text { if } \quad \sin \varphi<0\end{cases}
$$

together with the boundary conditions $\varphi(0)=\alpha, \varphi(\pi)=\beta$.
Consider a solution of the problem (1), (2), which has not zeros in the interval $(0 ; \pi)$. Then $\varphi_{0}=\varphi(0)=\alpha \in\left[0 ; \frac{\pi}{2}\right]$ and $\varphi_{1}=\varphi(\pi)=\beta \in\left[\frac{\pi}{2} ; \pi\right]$. This means that for any $t \in(0 ; \pi)$ a solution $x(t)>0$. Thus $x(t)$ is a solution of $x^{\prime \prime}=-\mu^{2} x$ and in polar coordinates satisfy $\varphi^{\prime}(t)=\mu^{2} \sin ^{2} \varphi+\cos ^{2} \varphi, \varphi(0)=\alpha, \varphi(\pi)=\beta$. By Proposition 1.2

$$
\begin{equation*}
t-t_{0}=\pi=\frac{1}{\mu} \arctan (\mu \tan \beta)+\frac{\pi}{\mu}-\frac{1}{\mu} \arctan (\mu \tan \alpha) \tag{6}
\end{equation*}
$$

Figure 2: The example of solutions of problem (1), (2) with $n=4$ and $n=3$ zeros in the interval $(0 ; \pi)$.

Since λ is arbitrary positive number, we get the expression for

$$
F_{0}^{+}=\left\{\left(\mu_{0}, \lambda\right), \text { where } \mu_{0} \text { is a solution of }(6)\right\}
$$

Similarly, the expression for F_{0}^{-}is

$$
F_{0}^{-}=\left\{\left(\lambda_{0}, \mu\right), \mu \in \mathbb{R}^{+}\right\}
$$

and λ_{0} can be obtained from

$$
\pi=\frac{1}{\lambda} \arctan (\lambda \tan \beta)+\frac{\pi}{\lambda}-\frac{1}{\lambda} \arctan (\lambda \tan \alpha) .
$$

When treating the case of $x(t)<0$ for any $t \in(0 ; \pi)$, we use also the results of Proposition (1.3) and (1.2).

Next we consider the case of $x(t)$ having exactly one zero, say, at $t=t_{1}$. Then for $0 \leq t \leq t_{1}$ we use $\mu^{2}=-\mu^{2} x$ and the length of the interval [$0 ; t_{1}$] is, by Proposition (1.2)

$$
t_{1}-0=t_{1}=\frac{1}{\mu} \arctan (\mu \tan \pi)+\frac{\pi}{\mu}-\frac{1}{\mu} \arctan (\mu \tan \alpha)
$$

or

$$
t_{1}-0=t_{1}=\frac{\pi}{\mu}-\frac{1}{\mu} \arctan (\mu \tan \alpha)
$$

For $t_{1} \leq t \leq \pi, x(t)$ is negative, therefore we consider a solution of $x^{\prime \prime}=-\lambda^{2} x$ and by Proposition (1.2) it is equal to

$$
\pi-t_{1}=\frac{1}{\lambda} \arctan (\lambda \tan (\beta+\pi))+\frac{\pi}{\lambda}-\frac{1}{\lambda} \arctan (\lambda \tan \pi)
$$

or by Proposition (1.3)

$$
\pi-t_{1}=\frac{1}{\lambda} \arctan (\lambda \tan \beta)+\frac{\pi}{\lambda} .
$$

The sum of two intervals is π, and we got the expression for $F_{1}^{+}=\{(\lambda, \mu)\}$, where λ and μ can be obtained from

$$
F_{1}^{+}:\left[\frac{\pi}{\mu}-\frac{1}{\mu} \arctan (\mu \tan \alpha)\right]+\left[\frac{\pi}{\lambda}+\frac{1}{\lambda} \arctan (\lambda \tan \beta)\right]=\pi,
$$

Similarly the expression for F_{1}^{-}is

$$
F_{1}^{-}:\left[\frac{\pi}{\lambda}-\frac{1}{\lambda} \arctan (\lambda \tan \alpha)\right]+\left[\frac{\pi}{\lambda}+\frac{1}{\lambda} \arctan (\lambda \tan \beta)\right]=\pi .
$$

For any solution of the problem (1), (2), which has exactly $n>0$ zeros in the interval $(0 ; \pi)$, the interval $[0 ; \pi]$ can be decomposed in $n+1$ subintervals $J_{T_{1}}:=\left[0 ; T_{1}\right], J_{T_{2}}:=$ $\left[T_{1} ; T_{1}+T_{2}\right], J_{T_{3}}:=\left[T_{1}+T_{2} ; T_{1}+T_{2}+T_{3}\right], \ldots, J_{T_{n+1}}:=\left[\sum_{n=1}^{n} T_{n} ; \pi\right]$ so, that in any of those subintervals the sign of a solution does not change (see Fig. 2), and we use the equations $x^{\prime \prime}=-\mu^{2} x$ and $x^{\prime \prime}=-\lambda^{2} x$, depending on the sign of $x(t)$ in the respective interval. We can compute the length of each subinterval making use of the results of Propositions 1.2 and 1.3. The total length of all $n+1$ subintervals is π. This is the basis for obtention of relations between μ and λ.

It is clear, that when finding the analytical description of the branches $F_{n}^{+}(\forall n \in \mathbb{N})$, decomposition of the main interval in subintervals is such that

$$
\begin{gathered}
T_{1}=\frac{\pi}{\mu}-\frac{1}{\mu} \arctan (\mu \tan \alpha), \\
T_{2}=T_{4}=T_{6}=\ldots=\frac{\pi}{\lambda}, \\
T_{3}=T_{5}=T_{7}=\ldots=\frac{\pi}{\mu}, \\
T_{n+1}= \begin{cases}\frac{\pi}{\mu}+\frac{1}{\mu} \arctan (\mu \tan \beta), & n \text { is even }, \\
\frac{\pi}{\lambda}+\frac{1}{\lambda} \arctan (\lambda \tan \beta), & n \text { is odd } .\end{cases}
\end{gathered}
$$

In the case of the branches $F_{n}^{-}(\forall n \in \mathbb{N})$ this decomposition is such that

$$
\begin{gathered}
T_{1}=\frac{\pi}{\lambda}-\frac{1}{\lambda} \arctan (\lambda \tan \alpha) \\
T_{2}=T_{4}=T_{6}=\ldots=\frac{\pi}{\mu} \\
T_{3}=T_{5}=T_{7}=\ldots=\frac{\pi}{\lambda} \\
T_{n+1}= \begin{cases}\frac{\pi}{\lambda}+\frac{1}{\lambda} \arctan (\lambda \tan \beta), & n \text { is even } \\
\frac{\pi}{\mu}+\frac{1}{\mu} \arctan (\mu \tan \beta), & n \text { is odd }\end{cases}
\end{gathered}
$$

We use the fact, that the sum of the lengths of all intervals $J_{T_{1}}, J_{T_{2}}, J_{T_{3}}, \ldots, J_{T_{n+1}}$ is π,

$$
\sum_{i=1}^{n+1} T_{i}=\pi
$$

and obtain the Fuchik spectrum for the problem (1), (2).

2.1 Properties of the Fuchik spectrum for the Sturm-Liouville problem

We consider the function

$$
\begin{equation*}
\psi(z, \varphi)=\frac{1}{z}[\pi-\arctan (z \tan \varphi)], z>0 \tag{7}
\end{equation*}
$$

Lemma 2.1 The function $\psi(z, \varphi)$ is a monotonically decreasing function with respect to both z and φ.

Proof. The proof immediately follows from monotonicity of the functions $\frac{1}{z}$ and $\arctan (z)$.
By using the formula (7), we can reduce the formulas for the branches of the Fuchik spectrum to the form

$$
\begin{gather*}
F_{2 k-1}^{+}: \psi(\mu, \alpha)+\frac{(k-1) \pi}{\mu}+\frac{(k-1) \pi}{\lambda}+\psi(\lambda, \gamma)=\pi \tag{8}\\
F_{2 k-1}^{-}: \psi(\lambda, \alpha)+\frac{(k-1) \pi}{\mu}+\frac{(k-1) \pi}{\lambda}+\psi(\mu, \gamma)=\pi \tag{9}\\
F_{2 k}^{+}: \psi(\mu, \alpha)+\frac{(k-1) \pi}{\mu}+\frac{k \pi}{\lambda}+\psi(\mu, \gamma)=\pi \tag{10}\\
F_{2 k}^{-}: \psi(\lambda, \alpha)+\frac{k \pi}{\mu}+\frac{(k-1) \pi}{\lambda}+\psi(\lambda, \gamma)=\pi \tag{11}
\end{gather*}
$$

where $\pi-\beta=\gamma \in\left[0 ; \frac{\pi}{2}\right]$.
Proposition 2.1 The branches F_{n}^{+}and F_{n}^{-}are symmetrical with respect to the bisectrix of the first quadrant. This means that $\forall n \in \mathbb{N}$, for each $(u, v) \in F_{n}^{+}$, there exists $(v, u) \in$ F_{n}^{-}and vice versa.
Proof. The formulas (8) and (9) are symmetrical with respect to replacement of μ by λ and vice versa. The same is true for (10) and (11).

Proposition 2.2 The branches F_{n}^{+}and F_{n}^{-}intersect at the point $\left(\nu_{n}, \nu_{n}\right)$ where ν_{n}^{2} is the respective simple eigenvalue of the problem

$$
\left\{\begin{array}{l}
x^{\prime \prime}=-\nu^{2} x \\
x(0) \cos \alpha-x^{\prime}(0) \sin \alpha=0, \\
x(\pi) \cos \beta-x^{\prime}(\pi) \sin \beta=0, \quad 0 \leq \alpha \leq \frac{\pi}{2} \leq \beta \leq \pi
\end{array}\right.
$$

Proof. The proof follows from the proposition 2.1.

Proposition 2.3 If $\alpha=\gamma$, then branches $F_{2 k-1}^{+}$and $F_{2 k-1}^{-}$coincide.
Proof. If $\alpha=\gamma$, then the formulas (8) and (9) are identical.
Proposition 2.4 The Fuchik branches $F_{n}^{ \pm}$are the graphs of monotonically decreasing functions.

Proof. This can be seen from the relations (8), (10), (9), (11).
Proposition 2.5 For any branch $F_{n}^{ \pm}$, where $n \in \mathbb{N}$ is fixed, there exist a vertical asymptote $\lambda=\lambda_{n}^{ \pm}$and a horizontal asymptote $\mu=\mu_{n}^{ \pm}, \forall n \in \mathbb{N}$.

Proof. We discuss the case of the branch $F_{2 k}^{+}$. If $\mu \rightarrow+\infty$, then $\psi(\mu, \alpha) \rightarrow 0, \psi(\mu, \gamma) \rightarrow 0$ and $\frac{(k-1) \pi}{\mu} \rightarrow 0$. It follows from (10) that $\frac{k \pi}{\lambda} \rightarrow \pi$ as $\mu \rightarrow+\infty$. The function $\mu=f(\lambda)$ is monotone, therefore $\lambda \rightarrow \lambda_{2 k}^{+}$, where $\lambda_{2 k}^{+}=k$ is the vertical asymptote.

By repetition of the argument of the previous case, we have that the horizontal asymptote $\mu=\mu_{2 k}^{+}$is a solution of

$$
\pi[(1+k)-\mu]=\arctan (\mu \tan \alpha)+\arctan (\mu \tan \gamma)
$$

We have that the branches $F_{2 k}^{+}$and $F_{2 k}^{-}$are symmetrical, therefore their vertical and horizontal asymptotes are symmetrical. The asymptotes for $F_{2 k}^{-}$, where k is fixed, are $\mu_{2 k}^{-}=k$ and $\lambda_{2 k}^{-}$, which is a solution of the equation:

$$
\pi[(1+k)-\lambda]=\arctan (\lambda \tan \alpha)+\arctan (\lambda \tan \gamma)
$$

The proof for the branches $F_{2 k-1}^{ \pm}$is similar. The vertical asymptote $\lambda_{2 k-1}^{+}$is a solution of equation $\pi(k-\lambda)=\arctan (\lambda \tan \gamma), \mu=\mu_{2 k-1}^{+}$is a solution of $\pi(k-\mu)=$ $\arctan (\mu \tan \alpha)$, but $\mu_{2 k-1}^{-}$and $\lambda_{2 k-1}^{-}$are symmetric with $\lambda_{2 k-1}^{+}$and $\mu_{2 k-1}^{+}$.

Theorem 2.2 (Comparison of asymptotes.) The asymptotes of the branches $F_{2 k-1}^{+}$ and $F_{2 k-1}^{-}$relate as shown $\forall k \in \mathbb{N}$:

If $\alpha>\gamma$, then

$$
\lambda_{2 k-1}^{-}<\lambda_{2 k-1}^{+}, \quad \mu_{2 k-1}^{-}>\mu_{2 k-1}^{+}
$$

If $\alpha<\gamma$, then

$$
\lambda_{2 k-1}^{-}>\lambda_{2 k-1}^{+}, \quad \mu_{2 k-1}^{-}<\mu_{2 k-1}^{+} .
$$

See Fig. 3.
The asymptotes of the branches $F_{2 k}^{+}$and $F_{2 k}^{-}$relate as shown:

$$
\lambda_{2 k}^{-}>\lambda_{2 k}^{+}, \quad \mu_{2 k}^{-}<\mu_{2 k}^{+}, \quad \forall \alpha, \gamma \forall k \in \mathbb{N} .
$$

See Fig. 4.

Figure 3: Comparison of asymptotes of the branches $F_{2 k-1}^{+}$and $F_{2 k-1}^{-}$.

Figure 4: Comparison of asymptotes of the branches $F_{2 k}^{+}$and $F_{2 k}^{-}$.

Figure 5: The functions $f_{3}=\pi(1-x), f_{1}=\arctan (30 x)$ and $f_{2}=\arctan (5 x)$ in the case of $\omega_{1}=\arctan 30>\omega_{2}=\arctan 5$.

Proof. We discuss the case of $\alpha>\gamma$. We show first that $\lambda_{2 k-1}^{-}<\lambda_{2 k-1}^{+}$.
The asymptotes $\lambda_{2 k-1}^{-}, \lambda_{2 k-1}^{+}$are solutions of

$$
\begin{equation*}
\pi(k-z)=\arctan (z \tan \omega) \tag{12}
\end{equation*}
$$

when $\omega_{1}=\alpha$ and $\omega_{2}=\gamma$ respectively. We consider the equation (12) in the case, when $\omega_{1}>\omega_{2}$.

From the fact that $\alpha, \gamma \in\left(0 ; \frac{\pi}{2}\right), z>0$, we obtain that

$$
\tan \omega_{1}>\tan \omega_{2} \text { and } \arctan \left(z \omega_{1}\right)>\arctan \left(z \omega_{2}\right)
$$

Hence the corresponding roots z_{1} and z_{2} relate as $z_{1}<z_{2}$ (see Fig. 2.1).
From this

$$
\lambda_{2 k-1}^{-}<\lambda_{2 k-1}^{+}
$$

The inequality $\mu_{2 k-1}^{-}>\mu_{2 k-1}^{+}$is true, since $F_{2 k-1}^{+}$and $F_{2 k-1}^{-}$are symmetrical.
In the case of $\alpha<\gamma$ the proof is similar and give that

$$
\lambda_{2 k-1}^{-}>\lambda_{2 k-1}^{+}, \quad \mu_{2 k-1}^{-}<\mu_{2 k-1}^{+}
$$

We will show that the inequality $\lambda_{2 k}^{-}>\lambda_{2 k}^{+}$for $\forall \alpha, \gamma$ holds. We recall, that $\lambda_{2 k}^{-}$is the solution of

$$
\pi\left[(1+k)-\lambda_{2 k}^{-}\right]=\arctan \left(\lambda_{2 k}^{-} \tan \alpha\right)+\arctan \left(\lambda_{2 k}^{-} \tan \gamma\right)
$$

or

$$
\pi k-\pi \lambda_{2 k}^{-}=\arctan \left(\lambda_{2 k}^{-} \tan \alpha\right)+\arctan \left(\lambda_{2 k}^{-} \tan \gamma\right)-\pi
$$

Since $\arctan (z \tan \varphi)<\frac{\pi}{2}$, if $\varphi \neq \frac{\pi}{2}+2 \pi n, n \in \mathbb{N}$, then

$$
\arctan \left(\lambda_{2 k}^{-} \tan \alpha\right)+\arctan \left(\lambda_{2 k}^{-} \tan \gamma\right)-\pi<\frac{\pi}{2}+\frac{\pi}{2}-\pi=0
$$

and

$$
\pi k-\pi \lambda_{2 k}^{-}<0
$$

Thus $\lambda_{2 k}^{+}=k<\lambda_{2 k}^{-}$.
The inequality $\mu_{2 k}^{-}<\mu_{2 k}^{+}$holds, since $F_{2 k}^{+}$and $F_{2 k}^{-}$are symmetrical.

3 Specific cases

3.1 Dirichlet problem

The Dirichlet problem is the specific case of the problem (1), (2), when $\alpha=0$ un $\beta=\pi$

$$
\left\{\begin{array}{l}
x^{\prime \prime}=-\mu^{2} x^{+}+\lambda^{2} x^{-} \\
x(0) \cos 0-x^{\prime}(0) \sin 0=0 \\
x(\pi) \cos \pi-x^{\prime}(\pi) \sin \pi=0
\end{array}\right.
$$

Let us use the polar coordinates, then

$$
\left\{\begin{array}{lll}
\varphi^{\prime}=\left\{\begin{array}{lll}
\mu^{2} \sin ^{2} \varphi+\cos ^{2} \varphi, & \text { if } & \sin \varphi \geq 0 \\
\lambda^{2} \sin ^{2} \varphi+\cos ^{2} \varphi, & \text { if } & \sin \varphi<0
\end{array}\right. \\
\varphi(0)=0, \\
\varphi(\pi)=\pi+\pi n
\end{array}\right.
$$

for some integer n. From Theorem 2.1 we have the expressions for the Fuchik spectrum for the Dirichlet problem

$$
\begin{aligned}
F_{2 k}^{+}: & \frac{(k+1) \pi}{\mu}+\frac{k \pi}{\lambda}=\pi, \\
F_{2 k}^{-}: & \frac{k \pi}{\mu}+\frac{(k+1) \pi}{\lambda}=\pi, \\
F_{2 k-1}^{ \pm}: & \frac{k \pi}{\mu}+\frac{k \pi}{\lambda}=\pi, \quad k=0,1,2, \ldots
\end{aligned}
$$

Dividing by π we have the expressions for the Fuchik spectrum for the Dirichlet problem, who are the identical with the result of Theorem of [[1], p. 244].

The spectrum is shown in Fig. 6.

3.2 The boundary conditions $\alpha=\pi / 4, \quad \beta=3 \pi / 4$

We consider the problem for $\alpha=\frac{\pi}{4}$ and $\beta=\frac{3 \pi}{4}$

$$
\left\{\begin{array}{l}
x^{\prime \prime}=-\mu^{2} x^{+}+\lambda^{2} x^{-} \\
x(0) \cos \frac{\pi}{4}-x^{\prime}(0) \sin \frac{\pi}{4}=0 \\
x(\pi) \cos \frac{3 \pi}{4}-x^{\prime}(\pi) \sin \frac{3 \pi}{4}=0
\end{array}\right.
$$

In polar coordinates

$$
\left\{\begin{array}{lll}
\varphi^{\prime}= \begin{cases}\mu^{2} \sin ^{2} \varphi+\cos ^{2} \varphi, & \text { if } \\
\lambda^{2} \sin ^{2} \varphi+\cos ^{2} \varphi, & \text { if } \\
\sin \varphi<0\end{cases} \\
\varphi(0)=\frac{\pi}{4}, & \\
\varphi(\pi)=\frac{3 \pi}{4}+\pi n
\end{array}\right.
$$

Figure 6: The Fuchik spectrum for Dirichlet problem, $\alpha=0$ and $\beta=\pi$.
for some integer n. From Theorem 2.1 we have the expressions for the Fuchik spectrum for this problem

$$
\begin{aligned}
& F_{0}^{+}: \frac{\pi}{\mu}-2 \frac{\arctan \mu}{\mu}=\pi, \\
& F_{0}^{-}: \frac{\pi}{\lambda}-2 \frac{\arctan \lambda}{\lambda}=\pi, \\
& F_{1}^{ \pm}: \frac{\pi}{\mu}-\frac{\arctan \mu}{\mu}+\frac{\pi}{\lambda}-\frac{\arctan \lambda}{\lambda}=\pi, \\
& F_{2}^{+}: \frac{2 \pi}{\mu}-2 \frac{\arctan \mu}{\mu}+\frac{\pi}{\lambda}=\pi, \\
& F_{2}^{-}: \frac{2 \pi}{\lambda}-2 \frac{\arctan \lambda}{\lambda}+\frac{\pi}{\mu}=\pi, \\
& \ldots \\
& F_{2 k-1}^{ \pm}: \frac{k \pi}{\mu}-\frac{\arctan \mu}{\mu}+\frac{k \pi}{\lambda}-\frac{\arctan \lambda}{\lambda}=\pi, \\
& F_{2 k}^{+}: \frac{(k+1) \pi}{\mu}-2 \frac{\arctan \mu}{\mu}+\frac{k \pi}{\lambda}=\pi, \\
& F_{2 k}^{-}: \frac{(k+1) \pi}{\lambda}-2 \frac{\arctan \lambda}{\lambda}+\frac{k \pi}{\mu}=\pi, \quad \forall k \in \mathbb{N} .
\end{aligned}
$$

The spectrum is shown in Fig. 7.

Figure 7: The Fuchik spectrum for the case of $\alpha=\frac{\pi}{4}$ and $\beta=\frac{3 \pi}{4}$.

3.3 Neumann problem

Finally we consider the case of $\alpha=\frac{\pi}{2}$ and $\beta=\frac{\pi}{2}$

$$
\left\{\begin{array}{l}
x^{\prime \prime}=-\mu^{2} x^{+}+\lambda^{2} x^{-} \\
x(0) \cos \frac{\pi}{2}-x^{\prime}(0) \sin \frac{\pi}{2}=0 \\
x(\pi) \cos \frac{\pi}{2}-x^{\prime}(\pi) \sin \frac{\pi}{2}=0
\end{array}\right.
$$

or

$$
\left\{\begin{array}{l}
x^{\prime \prime}=-\mu^{2} x^{+}+\lambda^{2} x^{-} \\
x^{\prime}(0)=x^{\prime}(\pi)=0
\end{array}\right.
$$

In polar coordinates

$$
\begin{cases}\varphi^{\prime}= \begin{cases}\mu^{2} \sin ^{2} \varphi+\cos ^{2} \varphi, & \text { if } \\ \lambda^{2} \sin ^{2} \varphi+\cos ^{2} \varphi, & \text { if } \\ \sin \varphi<0\end{cases} \\ \varphi(0)=\frac{\pi}{2}, & \\ \varphi(\pi)=\frac{\pi}{2}+\pi n\end{cases}
$$

for some integer n. From Theorem 2.1 we have the expressions for the Fuchik spectrum for the Neumann problem

$$
\begin{array}{ll}
F_{0}^{+}: & \mu=0 \\
F_{0}^{-}: & \lambda=0 \\
F_{1}^{ \pm}: & \frac{1}{2 \mu}+\frac{1}{2 \lambda}=1 \\
F_{2}^{ \pm}: & \frac{1}{\mu}+\frac{1}{\lambda}=1
\end{array}
$$

Figure 8: The Fuchik spectrum for the case of Neumann problem, $\alpha=\frac{\pi}{2}$ and $\beta=\frac{\pi}{2}$.

$$
F_{n}^{ \pm}: \quad \frac{n}{2 \mu}+\frac{n}{2 \lambda}=1, \quad \forall n \in \mathbb{N}
$$

The spectrum of the Neumann problem is shown in Fig. 8.

References

[1] A. Kufner and S. Fučik. Nonlinear differential equations(in Russian). - Russian Edition: Moscow, Nauka, 1988. - 304 p.
[2] T. Garbuza, On the Fuchik spectra, Daugavpils University, Master work, 2005, 68 p.

Т. Гарбуза. Спектр Фучика для краевой задачи второго порядка с условиями Штурма-Лиувилля.
 Аннотация. Изучается задача на собственные значения. Рассматривается кусочнолинейное дифференциальное уравнение второго порядка с краевыми условиями Штурма - Лиувилля
 $$
\begin{gathered} x^{\prime \prime}=-\mu^{2} x^{+}+\lambda^{2} x^{-}, \\ \mu, \lambda \in \mathbb{R}, \quad x^{ \pm}(t)=\max \{ \pm x, 0\}, \\ \left\{\begin{array}{l} x(0) \cos \alpha-x^{\prime}(0) \sin \alpha=0, \\ x(\pi) \cos \beta-x^{\prime}(\pi) \sin \beta=0 . \end{array}\right. \end{gathered}
$$

УДК 517.927
T. Garbuza. Fučika spektrs otrās kārtas robežproblēmai ar Šturma - Liuvila robežnosacījumiem.

Anotācija. Tiek pētīts uzdevums par īpašvērtībām. Tiek apskatīts otrās kārtas gabaliem lineārs diferenciālvienādojums ar Šturma-Liuvila robežnosacījumiem

$$
\begin{gathered}
x^{\prime \prime}=-\mu^{2} x^{+}+\lambda^{2} x^{-}, \\
\mu, \lambda \in \mathbb{R}, \quad x^{ \pm}(t)=\max \{ \pm x, 0\}, \\
\left\{\begin{array}{l}
x(0) \cos \alpha-x^{\prime}(0) \sin \alpha=0, \\
x(\pi) \cos \beta-x^{\prime}(\pi) \sin \beta=0 .
\end{array}\right.
\end{gathered}
$$

Daugavpils University
Department of Natural Sciences
and Mathematics
Daugavpils, Parades str. 1
d980408@inbox.lv

[^0]: ${ }^{1}$ Supported by ESF project Nr. 2004/0003/VPD1/ESF/PIAA/04/NP/3.2.3.1./0003/0065

