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Multiplicity results for the Neumann boundary value
problem

S. Atslega

Summary. We provide multiplicity results for the Neumann boundary value problem
where the second order differential equation is of the form x′′ = f(x).

1991 MSC 34B15

1 Introduction

We consider equation
x′′ = f(x), (1)

where f(x) is a continuously differentiable function which has 5 simple zeros, together
with the boundary conditions

x′(0) = 0, x′(1) = 0. (2)

Our goal is to get the multiplicity results for the problem (1), (2). In our considerations
we use the phase plane analysis. Our results can be generalized to the case of f(x) being
a function with n simple zeros.

2 Simple cases

Our assumptions on a function f(x) are:

(C1) f ∈ C1(R);

(C2) f(x) has simple zeros at p1 < p2 < p3 < p4 < p5;

(C3) f(−∞) = −∞ and respectively f(+∞) = +∞.
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Figure 2.1 The function f(x).

Let us consider the primitive F (x) =
∫ x

0
f(s) ds.

The function F (x) has exactly 3 local minimums at the points p1 < p3 < p5 and
consequently 2 local maximums at the points p2 < p4 as is shown in Fig. 2.2.

Figure 2.2 The primitive F (x).

The phase portrait of the equivalent system

{
x′ = y,
y′ = f(x)

(3)

depends on properties of the function f(x) and its primitive F (x).
There are exactly 2 critical points of the type “center” at (p2; 0), (p4; 0) and exactly 3

critical points of the type “saddle” at (p1; 0), (p3; 0), (p5; 0).
Let us consider the cases:

1. F (p1) < F (p3) < F (p5),

2. F (p5) < F (p3) < F (p1),

3. F (p3) < F (p1) < F (p5),

4. F (p3) < F (p5) < F (p1).

We consider the case 1 for definiteness. The following phase portrait describes solutions
of the system (3).
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Figure 2.3 The phase plane of the case 1.

Theorem 2.1 Let the conditions

n2π2 < |fx(p2)| < (n + 1)2π2, (4)

m2π2 < |fx(p4)| < (m + 1)2π2 (5)

hold. Then the Neumann boundary value problem (1), (2) has at least 2n+2m nontrivial
solutions.

Before to prove the theorem let us state the auxiliary results.

Lemma 2.1 There exists the homoclinic solution emanating from the point (p3; 0) and
going around the point (p2; 0).

Proof. Consider the primitive F3(x) =
∫ x

p3
f(s) ds. Let r1 be the first zero of F3(x)

to the left of p3. Consider the trajectory defined by the equation

x′2 = 2F (x)− 2F (p3) (6)

and passing through the point (r1; 0). Let T1 be the time needed for the point (r1; 0) to
move to a position (p3; 0) along the trajectory. This time is given by the formula

T =

∫ p3

r1

ds√
2F (s)− 2F (p3)

(7)

F (s)− F (p3) =
1

2
F ′′(p3)(s− p3)

2 + ε =
1

2
f ′(p3)(s− p3)

2 + ε.

∫ p3

r1

ds√
f ′(p3)(s− p3)2

=
1√

f ′(p3)

∫ p3

r1

d(s− p3)√
(s− p3)2

=

=
1√

f ′(p3)

∫ 0

r1−p3

dε

ε
=

1√
f ′(p3)

ln ε|0r1−p3
= +∞.

It is seen from (6) that any trajectory of equation (1) is symmetric with respect to
the x-axis. ¤
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Lemma 2.2 There exists the homoclinic solution emanating from the point (p5; 0) and
going around the point (p4; 0).

Proof. Consider the primitive F5(x) =
∫ x

p5
f(s) ds. Let r2 be the first zero of F5(x)

to the left of p5. Consider the trajectory defined by the equation

x′2 = 2F (x)− 2F (p5) (8)

and passing through the point (r2; 0). Let T2 be the time needed for the point (r2; 0) to
move to a position (p5; 0) along the trajectory. This time is given by the formula

T =

∫ p5

r2

=
ds√

2F (s)− 2F (p5)
(9)

F (s)− F (p5) =
1

2
F ′′(p5)(s− p5)

2 + ε =
1

2
f ′(p5)(s− p5)

2 + ε.

∫ p5

r2

ds√
f ′(p5)(s− p5)2

=
1√

f ′(p5)

∫ p5

r2

d(s− p5)√
(s− p5)2

=

=
1√

f ′(p5)

∫ 0

r2−p5

dε

ε
=

1√
f ′(p5)

ln ε|0r2−p5
= +∞.

Since any trajectory of equation (1) is symmetric with respect to the x-axis, the
assertion follows. ¤

Figure 2.4 Three primitives given by
F1(x) =

∫ x

p1
f(s)ds, F3(x) =

∫ x

p3
f(s)ds, F5(x) =

∫ x

p5
f(s)ds

Proof. Let us prove the existence of multiple solutions going around the critical
point (p2; 0). Let us consider the Cauchy problem (1),

x(0) = m, x′(0) = 0, (10)

where m ∈ (r1; p2). If m ∼ p2, then solutions x(t) of the problem (1), (10) behave like a
solution of the linear problem

y′′ = fx(p2)y, y(0) = −1, y′(0) = 0

and T (m) ∼ π√
|fx(p2)| . If nT (m) < 1 < (n + 1) T (m), then T (m) → +∞ for m → r1.

Hence at least n solutions of the Neumann problem.
There are symmetrical solutions for the case m ∈ (p2; p3.) Totally at least 2n solutions.
Then we consider the second critical point (p4; 0). Similar considerations yield at least

2m solutions going around the fourth critical point (p4; 0), the second “center” type point.
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Remark. Theorem 2.1 is valid also for the cases 2, 3, 4. The respective proofs can
be carried out.

3 More complicated cases

Let us consider the cases

1. F (p1) < F (p5) < F (p3),

2. F (p5) < F (p1) < F (p3).

These cases are symmetrical and we consider only the first one.

Figure 3.1 The phase portrait for the case of F (p1) < F (p5) < F (p3).

Consider the function

T (x0) =
1√
2

∫ x1(x0)

x0

ds√
F (s)− F (x0)

,

which is defined in the interval (x∗0; x
∗∗
0 ), where x1(x0) is the first zero to the right of x0

of the function F (s)− F (x0).
Define x∗0 to be the first zero to the left of p5 of the function F5 =

∫ x

p5
f(s)ds.

Define x∗∗0 to be the first zero to the left of p3 of the function F3 =
∫ x

p3
f(s)ds. Obviously

p1 < x∗0 < x∗∗0 < p2.

Lemma 3.1 Let Tmin = min{T (x0) : x ∈ (x∗0, x
∗∗
0 )}, where x1 is the first zero of the

function F (s)− F (x0) to the right of x0. Suppose that there exists an integer k such that
k Tmin < 1 < (k + 1) Tmin.

Then there are at least 4k solutions of the Neumann boundary value problem, with
trajectories going around the two singular points of the type “center”.

Proof. Let z : T (z) = min{T (x0), x∗0 < x0 < x∗∗0 }.
Consider the Cauchy problem (1), x(0) = x0, x′(0) = 0, x0 ∈ (x∗0; z). When x0 ∼ z,

then the half period T (x0) satisfies the condition k Tmin < 1 < (k + 1) Tmin. On the other
hand, T (x0) → +∞ as x0 ∼ x∗0. Hence at least k solutions of the problem. Similarly for
the case z < m < x∗∗0 . Hence additionally at least k solutions.
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Define z1 as the first zero of F (s) − F (z) to the right of z. Notice that z1 ∈ (z2; p5).
Consider the problem x(0) = n for n ∈ (z2; z1). When n ∼ z1, the condition is satisfied,
and T (n) → +∞ as n ∼ z2. Hence at least k solutions of the problem. Similarly for
n ∈ (z1; p5).

Totally at least 4k solutions.

Theorem 3.1 Let the conditions (4) and (5) hold. Suppose that there exists an integer
k such that

kTmin < 1 < (k + 1)Tmin.

Then the Neumann boundary value problem (1), (2) has at least 2n + 2m + 4k nontrivial
solutions.

The proof follows from the proofs of Theorem 2.1 and Lemma 3.1.

4 Examples

Example 1. Consider the second-order nonlinear boundary value problem

x′′ = 6x5 + 55x4 + 35x3 − 408.75x2 + 33x + 369,
x′(0) = x′(1) = 0.

(11)

The function f(x) = 6x5 + 55x4 + 35x3 − 408.75x2 + 33x + 369 has exactly 3 critical
points of the type “saddle” at the points p1 = −6.90, p3 = −0.92, p5 = 1.80 and 2 critical
points of the type “center” at the point p2 = −4.37, p4 = 1.22.

Respectively the function

F (x) = x6 + 11x5 + 8.75x4 − 136.25x3 + 16.5x2 + 369x− 270

has 3 local minimums and consequently 2 local maximums as is shown in Fig. 4.1.
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Figure 4.1 The function f(x) and its primitive F (x)

fx(p2) = −1811.24;

The condition
132π2 < 1811.24 < 142π2

holds. Then the boundary value problem (11) has at least 26 solutions.
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fx(p4) = −337.374;

The condition
52π2 < 337.374 < 62π2,

holds. Then the boundary value problem (11) has at least 10 solutions.
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Figure 4.2

Hence the boundary value problem (11) has at least 36 solutions.

Example 2. Consider the second-order nonlinear boundary value problem

x′′ = 6x5 − 2.5x4 − 138x3 − 34.5x2 + 247x + 12
x′(0) = x′(1) = 0.

(12)

The function f(x) = 6x5 − 2.5x4 − 138x3 − 34.5x2 + 247x + 12 has exactly 3 critical
points of the type “saddle” at the points p1 = −4.19, p3 = −0.05, p5 = 4.95 and 2 critical
points of the type “center” at the point p2 = −1.57, p4 = 1.27.

Respectively the function

F (x) = x6 − 0.5x5 − 34.5x4 − 11.5x3 + 123.5x2 + 12x− 90

has 3 local minimums and consequently 2 local maximums as is shown in Fig. 4.3.
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Figure 4.3 The function f(x) and its primitive F (x)

fx(p2) = −442.928;

The condition
62π2 < 442.928 < 72π2,
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holds. Then the boundary value problem (12) has at least 12 solutions.

fx(p4) = −452.215;

The condition
62π2 < 452.215 < 72π2,

holds. Then the boundary value problem (12) has at least 12 solutions.
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Figure 4.4

Figure 4.5

Hence the boundary value problem (11) has at least 44 solutions.
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Ñ. Àòñëåãà. Ðåçóëüòàòû î ÷èñëå ðåøåíèé äëÿ çàäà÷è Íåéìàíà.
Àííîòàöèÿ. Ïðèâîäÿòñÿ ðåçóëüòàòû î ÷èñëå ðåøåíèé â çàäà÷å Íåéìàíà äëÿ

äèôôåðåíöèàëüíîãî óðàâíåíèÿ âòîðîãî ïîðÿäêà âèäà x′′ = f(x).
ÓÄÊ 517.927
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S. Atslega. Rezultāti par atrisinājumu skaitu Neimana problēmā.
Anotācija. Sniegti rezultāti par atrisinājumu skaitu Neimana problēmā otrās kārtas

diferenciālvienādojumam formā x′′ = f(x).
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