T. Garbuza. Fuchik spectrum for the second order Sturm-Liouville boundary value problem |
We provide the explicit formulas for the Fuchik
spectrum of the boundary value problem \begin{equation*} x^{\prime\prime}=-\mu^2x^+ +\lambda^2x^-, \end{equation*} \begin{equation*} \mu,\;\lambda\in\mathbb{R},\quad x^{\pm}(t)=\max \{\pm x,0\}, \end{equation*} \begin{equation*} \left\lbrace% \begin{array}{l} x(0)\cos\alpha-x'(0)\sin\alpha=0,\\ x(\pi)\cos\beta-x'(\pi)\sin\beta=0.\\ \end{array}% \right. \end{equation*} |