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Types of solutions and multiplicity results

for two-point fourth order nonlinear

boundary value problems

I. Yermachenko and F. Sadyrbaev

Summary. Two-point boundary value problems for the fourth order ordinary non-
linear differential equations with monotone right sides are considered. If the respective
nonlinear equation can be reduced to a quasi-linear one with a non-resonant linear part
and both equations are equivalent in some domain D, and if solutions of the quasi-linear
problem lie in D, then the original problem has a solution. We say then that the original
problem allows for quasilinearization. We show that a quasi-linear problem has a solution
of definite type which corresponds to the type of the linear part. If quasilinearization
is possible for essentially different linear parts, then the original problem has multiple
solutions.
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1 Introduction

Consider the boundary value problem

x(4) = f(t, x, x′), t ∈ I := [0, 1], (1)

x(0) = x′(0) = 0 = x(1) = x′(1). (2)

Function f : I×R2 → R is supposed to be continuous together with the partial derivatives
fx and fx′ (the unique solvability of the Cauchy problem x(0) = x0, x′(0) = y0 is ensured
as well as the continuous dependence of solutions on initial data). Consider also the
quasi-linear equation

x(4) = k4x + F (t, x, x′), (3)

where F, Fx, Fx′ : I ×R2 → R are continuous and F is bounded, that is, |F (t, x, x′)| < M
∀(t, x, x′) ∈ I × R2. If the linear part (L4x)(t) := x(4) − k4x is nonresonant with respect
to the boundary conditions (2), that is, the homogeneous problem (L4x)(t) = 0, (2) has
only the trivial solution, then the problem (3), (2) is solvable. Suppose that equations
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(1) and (3) are equivalent in a domain D = {(t, x, x′); 0 ≤ t ≤ 1, |x| ≤ N, |x′| ≤ N1}. If
any solution x(t) of the problem (3), (2) satisfies the estimates

|x(t)| ≤ N, |x′(t)| ≤ N1, ∀t ∈ I, (4)

then it solves also the problem (1), (2). We will say for brevity that the problem (1), (2)
allows for quasilinearization with respect to the linear part (L4x)(t).

Suppose that the problem (1), (2) allows for quasilinearization with respect to a dif-
ferent linear part (l4x)(t) also. Does that mean that the original problem has another
solution, generated by this quasilinearization?

In what follows we try to answer this question.
Our research is motivated by the papers of L. Erbe [3], H. Knobloch [6], [7], L. Jackson

and K. Schrader [5], who studied oscillatory properties of solutions of two-point second
order boundary value problems. They characterized a solution of BVP by oscillatory
properties of the respective linear equation of variations

y′′ = Fx(t, ξ, ξ
′)y + Fx′(t, ξ, ξ

′)y′. (5)

It was proved essentially in the mentioned results that the BVP for a quasilinear equation
x′′ = F (t, x, x′) with a bounded F has a solution ξ(t), for which equation (5) is disconju-
gate in the interval [0, 1], that is, a solution y(t), which is defined by the initial conditions
y(0) = 0, y′(0) = 1, does not vanish for t ∈ (0, 1) (it may vanish at t = 1, however).

It was shown by the authors in [13] that similar results are valid for quasi-linear
problems for equations of the form

x′′ + p(t)x′ + q(t)x = F (t, x, x′). (6)

The Dirichlet problem for equation above must have a solution ξ(t), which induces the
same oscillatory properties for the respective equation of variations, as the linear part in
(6) has.

This general result was applied then to show that for some equations the process of
quasilinearization may prove the existence of multiple solutions.

The aim of this article is to generalize the described results on quasilinearization to
the fourth order quasi-linear and then nonlinear equations.

We provide first basics of the oscillatory theory for two-termed linear fourth order
differential equations. This theory was developed by Leighton and Nehari [8].

Definitions of the type of a solution to a fourth order boundary value problems are
given.

The general result and related auxiliary results for quasi-linear problems are stated.
The idea of quasilinearization is described, which is applied to investigation of the

Emden – Fowler fourth order nonlinear equation.
Finally the results of computation are provided, which show that multiple solutions

of different types can be obtained, using the quasilinearization process, for the Dirichlet
boundary value problem for the Emden – Fowler type equation.

It should be mentioned that, as a by-product, estimates of the Green’s function for
the fourth order linear boundary value problem were obtained.
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2 Preliminaries

In this section we provide basics of the oscillation theory by Leighton and Nehari for
equations of the form

x(4) = p(t)x, (7)

where p(t) is a positive valued continuous function.
Definition 1. A point η is called by a conjugate point for the point t = 0, if there

exists a nontrivial solution x(t) such that

x(0) = x′(0) = 0 = x(η) = x′(η).

The main result in [8] is stated below.

Theorem 2.1 Suppose that equation (7) has a solution with n + 3 zeros for t > 0. Then
there exist n conjugate to t = 0 points ηi, which form ascending sequence

η0 < η1 < . . . < ηn−1.

The respective solutions xi(t) (i = 0, 1, . . . , n− 1), which are called by extremal solutions,
have exactly i simple zeros in the intervals (0, ηi).

Corollary 2.1 The equation x(4) = k4x has infinite sequence of conjugate (to the point
t = 0) points ηi.

Proof. Since the equation above has a nontrivial solution with infinitely many zeros,
the assertion follows. ¤

Suppose that initial conditions are of the form

x(0) = x′(0) = 0, (8)

x′′(0) = r cos Θ, x′′′(0) = r sin Θ. (9)

It was shown in [8] that no extremal solutions are possible for Θ ∈ [0, π/2] and Θ ∈
[π, 3π/2]. Let Θi relate to an extremal solution xi(t). It was shown in [11] that Θi are
arranged as follows for solutions with positive x′′(0) (and respectively negative x′′′(0))

− π/2 < Θ2 < . . . < Θ2n < . . . < Θ2m+1 < . . . < Θ1 < 0. (10)

Theorem 2.2 ([11]) Conjugate points continuously depend on the coefficient p(t).

3 Quasi-linear problems

Consider the quasi-linear equation

x(4) − k4x = F (t, x) (11)

together with the boundary conditions (2). Suppose the following conditions are satisfied.

(A1) F and Fx are C(I ×R)-functions;
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(A2) F (t, 0) ≡ 0;

(A3) k4 + Fx(t, x) > 0 for any (t, x) ∈ I × R.

Definition 2. We will say that the linear part (L4x)(t) := x(4)− k4x is i-nonresonant
with respect to the boundary conditions (2), if there are exactly i conjugate points in the
interval (0, 1) and t = 1 is not a conjugate point.

Definition 3. We will say that ξ(t) is an i-type solution of the problem (11), (2), if for
small enough α, β > 0 the difference u(t; α, β) = x(t; α, β)− ξ(t) has exactly i conjugate
points in (0, 1) and t = 1 is not a conjugate point, where x(t; α, β) is a solution of (11),
which satisfies the initial conditions

x(0; α, β) = ξ(0), x′(0; α, β) = ξ′(0), (12)

x′′(0; α, β)− ξ′′(0) = α, x′′′(0; α, β)− ξ′′′(0) = −β. (13)

Remark 3.1. An i-type solution ξ of the problem (11), (2) has the following characteristics
in terms of the variational equation: a solution y(t) of the respective variational equation
either has exactly i conjugate points in the interval (0, 1], or it has exactly i conjugate
points in the interval (0, 1) and t = 1 is a conjugate point. The cases of the i-th conjugate
point of being at t = 1 or (i + 1)-th conjugate point being at t = 1 are not excluded.

Theorem 3.1 Quasi-linear problem (11), (2) with an i-nonresonant linear part (L4x)(t)
has an i-type solution.

We state several lemmas before to prove the theorem.

Lemma 3.1 A set S of all solutions of the BVP (11), (2) is non-empty and compact in
C3([0, 1]).

Proof. Solvability can be proved by standard application of the Schauder principle
to the operator T : C3(I) → C3(I), where T is defined by

(Tx)(t) =

1∫

0

G(t, s)F (s, x(s)) ds

and G(t, s) is the Green’s function for (L4x)(t) = 0, (2). Notice that F is bounded.
Compactness of S is obtained by routine application of the Arzela - Ascoli criterium.

Remark 3.2. Solvability of quasi-linear problems with nonresonant linear parts is well-
known ([2]).

Remark 3.3. Any solution x(t) of the problem (11), (2) satisfies the estimate

max
I
|x(t)| ≤ Γ ·M, (14)

where Γ = max
0≤t,s≤1

|G(t, s)|, M = sup{|F (t, x)| : (t, x) ∈ I × R}.
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Lemma 3.2 There are elements x∗(t) and x∗(t) in S, which possess the properties:
x∗′′2(0) + x∗′′′2(0) = max{x′′2(0) + x′′′2(0) : x ∈ S, x′′(0) > 0, x′′′(0) < 0}. Similarly for
x∗.

Proof. The set S1 = {x′′2(0) + x′′′2(0) : x ∈ S} is an image of a continuous map
M : C3([0, 1]) → R defined by M(x) = x′′2(0) + x′′′2(0).

Denote by x(t; r, Θ) a solution of the Cauchy problem (11), (8), (9).

Lemma 3.3 If x(t; r, Θ) is a nontrivial solution of the BVP (11), (2), then either Θ ∈
(−π/2, 0) or Θ ∈ (π/2, π).

Proof. If this were not the case then either x′′(0) ≥ 0 and x′′′(0) ≥ 0 or x′′(0) ≤ 0
and x′′′(0) ≤ 0. Taking into account that x(0) = x′(0) = 0 one concludes that either
x(t) ≥ 0 together with the derivatives of order up to the third, or, respectively, x(t) ≤ 0
along with the derivatives. If, say, x(i)(t) ≥ 0, (i = 0, 1, 2, 3) then either x(t) ≡ 0 or it
does not satisfy the boundary conditions at t = 1.

Lemma 3.4 Let the conditions (A1) – (A3) be fulfilled. Suppose that the linear part
(L4x)(t) in (11) is i-nonresonant. Let ξ be any element of S.

Then the function u(t; r, Θ) =
x(t; r, Θ)− ξ(t)

r
for any Θ ∈ [0, 2π) tends to a solution

y(t) of the Cauchy problem

y(4) − k4y = 0, y(0) = y′(0) = 0, y′′(0) = cos Θ, y′′′(0) = sin Θ (15)

as r → +∞, where x(t; r, Θ) is a solution of the problem

x(4) − k4x = F (t, x), x(0) = x′(0) = 0,

x′′(0)− ξ′′(0) = r cos Θ, x′′′(0)− ξ′′′(0) = r sin Θ.

Proof. The functions u(t; r, Θ) solve the initial value problems

(L4u)(t) =
1

r
[F (t, x(t))− F (t, ξ(t)], (16)

u(0) = u′(0) = 0, u′′(0) = cos Θ, u′′′(0) = sin Θ.

Let r → +∞. The right side in (16) then tends to zero uniformly in t for fixed Θ. By
classical results, u(t; r, Θ) tends then to a solution y(t) of the problem (15).

Lemma 3.5 Let ξ be any element of S and x(t; r, Θ) have the same meaning as in the
precedent Lemma. The function v = x− ξ satisfies then the equation

(L4v)(t) = Φ(t)v, (17)

where Φ(t; r, Θ) =
F (t, x)− F (t, ξ)

x− ξ
= Fx(ω(t)) (ω, by Mean Value Theorem, stands for

some intermediate point between ξ and x).
If equation (17) has for some r and Θ a conjugate point at t = 1 then the sum of the

respective v(t; r, Θ) and ξ solves the BVP (11), (2).

Proof. Can be found in [11].
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Proof of the Theorem 3.1. Let ξ(t) be a solution x∗(t) with the maximum property,
described in Lemma 3.2. Consider solutions x(t; r, Θ) of the initial value problem (11),

x(0) = x′(0) = 0, x′′(0)− ξ′′(0) = r cos Θ, x′′′(0)− ξ′′′(0) = r sin Θ. (18)

The difference u(t; r, Θ) := x(t; r, Θ)− ξ(t) satisfies the linear equation

(L4)(t) = Φ(t; r, Θ)u, (19)

where Φ(t; r, Θ) is defined above. Consider linear equations (19) for r ∼ 0. Suppose that
ξ(t) is not an i-type solution. To be definite, consider the case of the difference u(t; r, Θ)
to have more than i points of double zero in the interval (0, 1) for small values of r. Recall
that u′′′(0) = r sin Θ < 0 and u′′(0) = r cos Θ > 0. Let Θ ∈ (−π

2
, 0) be fixed. For r ∼ +∞

the respective linear equations (19) have exactly i conjugate points. Thus there exists
r1(Θ) such that the respective linear equation (19) has (i + 1)-th conjugate point exactly
at t = 1. This is true for any Θ ∈ (−π

2
, 0). Consider the continuous curve r1(Θ), which is

defined for any Θ ∈ (−π
2
, 0). Let ω(Θ) be the respective angle.

Consider the difference ω(Θ) − Θ. It has different signs for Θ = 0 and Θ = −π

2
.

Therefore there exists Θ0 such that ω(Θ0) = Θ0. Thus by Lemma 3.5 a solution to the
BVP exists which has r greater than that for ξ. This contradicts the choice of ξ = x∗.
Similarly other cases can be considered.

Thus ξ is an i-type solution of the problem (11), (2). Other cases can be treated
similarly. ¤

4 Quasilinearization and multiple solutions

Consider an equation
x(4) = f(t, x) (20)

together with the boundary conditions (2).
Definition 4. Let equations (20) and (11), where the linear part (L4x)(t) in (11) is

i-nonresonant in the interval I, be equivalent in a domain

DN = {(t, x) : 0 ≤ t ≤ 1, |x| < N} (21)

in the sense that any solution x : I → R of (20) with a graph in DN is also a solution of
(11) and vice versa. Suppose that any solution x(t) of the quasi-linear problem (11), (2)
satisfies an estimate

|x(t)| < N, ∀t ∈ I. (22)

We will say then that the problem (20), (2) allows for quasilinearization with respect to
a domain DN and a linear part (L4x)(t).

Remark 4.1. Any solution x(t) of the problem (11), (2) satisfies the estimate (22) if the
relation Γ ·M < N holds, where Γ, M have the same meaning as in (14).

Theorem 4.1 If the problem (20), (2) allows for quasilinearization with respect to some
domain DN and some i-nonresonant linear part (L4x)(t), then it has a solution.
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Proof. Let x(t) be a solution of the quasi-linear problem (11), (2). If x(t) satisfies
the estimates (22) and equations (20) and (11) are equivalent in DN , then x(t) solves also
the problem (20), (2).

Theorem 4.2 Suppose that the problem (20), (2) allows for quasilinearization with re-
spect to DN and i-nonresonant linear part (L4x)(t), and, at the same time, it allows for
quasilinearization with respect to a domain

DM = {(t, x) : 0 ≤ t ≤ 1, |x| < M, }

and j-nonresonant linear part (l4x)(t), where i 6= j.
Then the problem (20), (2) has at least 2 solutions.

Proof is evident.

Corollary 4.1 Suppose that the problem (20), (2) allows for quasilinearization with re-
spect to n essentially different (in the sense of Definition 4) linear parts and n domains
of the form (21). Then it has at least n different solutions.

5 Applications

Consider the boundary value problem for the forth-order differential equation

x(4) = α2 · |x|p sign x, (23)

x(0) = x′(0) = 0 = x(1) = x′(1), (24)

where α 6= 0, p > 0, p 6= 1.
The equation (23) is equivalent to the equation

x(4) − k4x = α2 · |x|p sign x− k4x. (25)

Suppose that k satisfies
cos k · cosh k 6= 1. (26)

The respective homogeneous problem

x(4) − k4x = 0, (27)

(24) then has only the trivial solution, that is, the linear part in (25) is non-resonant.
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5.1 Green’s function

The Green’s function of the problem (27), (24) is given by

Gk(t, s) = 1
4

((
ek(s+t) + e2k−k(s+t)

)
sin k +

(
ek(t−s) − e2k−k(t−s)

)
cos k+

2ek sin k(t− s)− e2k
(
cos ks− sin ks

)(
cos k(t− 1) + sin k(t− 1)

)
+

ek(t+1)
(
cos ks− sin ks

)
+ ek(s+1)

(
cos kt− sin kt

)−
ekt

(
cos k(s− 1)− sin k(s− 1)

)− eks
(
cos k(t− 1)− sin k(t− 1)

)−
ek(1−t)

(
cos ks + sin ks

)− ek(1−s)
(
cos kt + sin kt

)
+

ek(2−t)
(
cos k(s− 1) + sin k(s− 1)

)
+ ek(2−s)

(
cos k(t− 1) + sin k(t− 1)

)
+

ek−k(t−s) − ek+k(t−s) +
(
cos ks + sin ks

)(
cos k(t− 1)− sin k(t− 1)

))
,

if 0 ≤ s ≤ t ≤ 1,

(28)

Gk(t, s) = 1
4

((
ek(s+t) + e2k−k(s+t)

)
sin k +

(
ek(s−t) − e2k−k(s−t)

)
cos k+

2ek sin k(s− t)− e2k
(
cos kt− sin kt

)(
cos k(s− 1) + sin k(s− 1)

)
+

ek(t+1)
(
cos ks− sin ks

)
+ ek(s+1)

(
cos kt− sin kt

)−
ekt

(
cos k(s− 1)− sin k(s− 1)

)− eks
(
cos k(t− 1)− sin k(t− 1)

)−
ek(1−t)

(
cos ks + sin ks

)− ek(1−s)
(
cos kt + sin kt

)
+

ek(2−t)
(
cos k(s− 1) + sin k(s− 1)

)
+ ek(2−s)

(
cos k(t− 1) + sin k(t− 1)

)
+

ek−k(s−t) − ek+k(s−t) +
(
cos kt + sin kt

)(
cos k(s− 1)− sin k(s− 1)

))
,

if 0 ≤ t < s ≤ 1,

(29)

where
4 = 8k3ek(cosh k cos k − 1).

Proposition 5.1 The Green’s function Gk(t, s) satisfies the estimate

∣∣Gk(t, s)
∣∣ ≤ Γk =

cosh k + (1 +
√

2)(ek + 1)

2k3
∣∣ cosh k · cos k − 1

∣∣ . (30)

5.2 Estimates

We wish to make the right side in (25) bounded. Denote

fk(x) := α2 · |x|p sign x− k4x.

The function fk(x) is odd. Let us consider it for nonnegative values of x. There exists a
positive point of local extremum x0 (it is either a point of minimum in case of p > 1 or a
point of maximum in case of 0 < p < 1),

x0 =
( k4

α2p

) 1
p−1

.

We can calculate the value of the function at the point of extremum x0. Set

Mk =
∣∣fk(x0)

∣∣ = α
2

1−p ·
(k4

p

) p
p−1 · |p− 1|. (31)

Choose Nk so that
|x| ≤ Nk ⇒ |fk(x)| ≤ Mk, ∀ t ∈ I.
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The value of Nk is computed by solving the equation

fk(x) = −fk(x0),

or, equivalently,

α2 · |x|p − k4x =
(k4

p

) p
p−1 · (1− p) · α 2

1−p (32)

with respect to x. Computation gives

Nk =
(k4

α2

) 1
p−1

β, (33)

where a constant β is to be found from the equation

βp = β + (p− 1) · p p
1−p . (34)

Equation (34) has a root β > 1 for any positive p (p 6= 1).
Let us consider the quasi-linear equation

x(4) − k4x = Fk(x), (35)

where

Fk(x) =





fk(x), |x| ≤ Nk,
fk(Nk + ε1), x ≥ Nk + ε1,
fk(−Nk − ε1), x ≤ −Nk − ε1.

We require also the function Fk(x) to be continuously differentiable and such that k4 +
dFk

dx
> 0. This is possible due to the properties of f(x). Then

max{
∣∣Fk(x)

∣∣ : t ∈ I, x ∈ R} ≤ Mk + ε2. (36)

Notice that both positive ε1 and ε2 can be made arbitrarily small. Denote

Ωk = {(t, x) : 0 ≤ t ≤ 1, |x(t)| ≤ Nk}.

The original problem (23), (24) and the quasi-linear one (35), (24) are equivalent in Ωk .

The quasi-linear problem (35), (24) can be written in the integral form

x(t) =

1∫

0

Gk(t, s)Fk(x(s)) ds.

It follows from (30), (36) that

∣∣x(t)
∣∣ ≤ Γk · (Mk + ε2).

If the inequality
Γk ·Mk < Nk (37)
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holds, and ε2 is such that also Γk · (Mk + ε2) < Nk (and this is the case), then a solution
x(t) of the quasi-linear problem (35), (24) satisfies the estimate

∣∣x(t)
∣∣ < Nk, ∀ t ∈ [0, 1]

and this solution x(t) solves the original problem (23), (24) also. (The oscillatory pro-
perties of a solution x(t) depend on the linear part

(
L4x

)
(t) := x(4) − k4x.)

It follows from (31), (33) that the inequality (37) takes the form

Γk · α
2

1−p ·
(k4

p

) p
p−1 · |p− 1| <

(k4

α2

) 1
p−1

β,

or

Γk · k4 < β · p
p

p−1

|p− 1| . (38)

Notice that the inequality (38) is independent of α.
It follows from (30) that the latter inequality can be written in the form

k · cosh k + (1 +
√

2)(ek + 1)

2
∣∣ cosh k · cos k − 1

∣∣ < β · p
p

p−1

|p− 1| . (39)

Since β > 1 and lim
p→1

p
p

p−1

|p− 1| = +∞ the right side of the inequality (39) tends to ∞ as

p → 1. Then the inequality (39) holds for arbitrarily large values of k.
If there exist numbers kj, which belong to the different intervals

(
ξj, ξj+1

)
, where ξj

and ξj+1 are the roots of the equation

cos ξ · cosh ξ = 1,

such that the inequality (37) and/or respectively (39) holds, then there exist different
solutions of original problem (23), (24).

To simplify calculations take k = πn, where n = 1, 2 . . . In this case the Green’s
function satisfies the estimates

∣∣Gk(t, s)
∣∣ ≤ Γ1(k) =

(1 +
√

2)ek

k3(ek + 1)
, if k = (2n− 1)π (40)

and ∣∣Gk(t, s)
∣∣ ≤ Γ2(k) =

(1 +
√

2)ek

k3(ek − 1)
, if k = 2nπ. (41)

Therefore, the inequality (37) takes the form

k · (1 +
√

2)ek

(ek + 1)
< β · p

p
p−1

|p− 1| , for k = (2n− 1)π, (42)

k · (1 +
√

2)ek

(ek − 1)
< β · p

p
p−1

|p− 1| , for k = 2nπ. (43)

In the table below the results of calculations are provided. It is shown for certain values
of k in the form k = πn, n = 1, 2 . . . are good for the inequalities (42) and (43) to be
satisfied.
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5.3 Remarks on numerically finding solutions

It is seen from the table below that for certain p there exist multiple solutions of the
BVP. Basic relations (38) and (39) are independent of the coefficient α2. However, possible
solutions of the BVP, which can be obtained using the quasilinearization process, satisfy
the estimate

|xk(t)| ≤ Γk ·Mk < Nk =
(k4

α2

) 1
p−1

β, (44)

where the right side depends on α2.

Set p =
9

8
, for instance. Then at least three solutions xπ(t), x2π(t) and x3π(t) to the

BVP are expected to exist (see the table below). Computation shows that Nπ =
π32

α16
β ≈

1.05359 · 1016

α16
. Respectively,

N2π =
(2π)32

α16
β ≈ 4.52514 · 1025

α16
, N3π =

(3π)32

α16
β ≈ 1.95233 · 1031

α16
.

Therefore in order to get reasonably bounded solutions of the BVP one should consider
equations with large enough coefficients α2.
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p =
4
5

β ≈ 1.3632 k = π; k = 2π

p =
5
6

β ≈ 1.3553 k = π; k = 2π

p =
6
7

β ≈ 1.3499 k = π; k = 2π; k = 3π

p =
7
8

β ≈ 1.3461 k = π; k = 2π; k = 3π

p =
8
9

β ≈ 1.3431 k = π; k = 2π; k = 3π; k = 4π

p =
9
10

β ≈ 1.3407 k = π; k = 2π; k = 3π; k = 4π

p =
10
11

β ≈ 1.3388 k = π; k = 2π; k = 3π; k = 4π; k = 5π

p =
11
12

β ≈ 1.3373 k = π; k = 2π; k = 3π; k = 4π; k = 5π

p =
12
13

β ≈ 1.3359 k = π; k = 2π; k = 3π; k = 4π; k = 5π

p =
13
14

β ≈ 1.3349 k = π; k = 2π; k = 3π; k = 4π; k = 5π; k = 6π

. . . . . . . . .

p =
14
13

β ≈ 1.3076 k = π; k = 2π; k = 3π; k = 4π; k = 5π; k = 6π

p =
13
12

β ≈ 1.3065 k = π; k = 2π; k = 3π; k = 4π; k = 5π

p =
12
11

β ≈ 1.3053 k = π; k = 2π; k = 3π; k = 4π; k = 5π

p =
11
10

β ≈ 1.3038 k = π; k = 2π; k = 3π; k = 4π

p =
10
9

β ≈ 1.3019 k = π; k = 2π; k = 3π; k = 4π

p =
9
8

β ≈ 1.2998 k = π; k = 2π; k = 3π

p =
8
7

β ≈ 1.2969 k = π; k = 2π; k = 3π

p =
7
6

β ≈ 1.2933 k = π; k = 2π; k = 3π

p =
6
5

β ≈ 1.2884 k = π; k = 2π

p =
5
4

β ≈ 1.2813 k = π; k = 2π
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È.Ð. Åðìà÷åíêî, Ô.Æ. Ñàäûðáàåâ. Òèïû ðåøåíèé â äâóõòî÷å÷íîé íåëè-
íåéíîé êðàåâîé çàäà÷å ÷åòâåðòîãî ïîðÿäêà: îöåíêè ÷èñëà ðåøåíèé.

Àííîòàöèÿ. Ðàññìàòðèâàåòñÿ äâóõòî÷å÷íàÿ êðàåâàÿ çàäà÷à äëÿ íåëèíåéíîãî ÎÄÓ
÷åòâåðòîãî ïîðÿäêà ñ ìîíîòîííîé ïðàâîé ÷àñòüþ. Åñëè íåëèíåéíîå óðàâíåíèå ìîæåò
áûòü ïðåäñòàâëåíî â êâàçèëèíåéíîé ôîðìå ñ íåðåçîíàíñíîé ëèíåéíîé ÷àñòüþ è îáà
óðàâíåíèÿ ýêâèâàëåíòíû â íåêîòîðîé îáëàñòè D, êîòîðîé ïðèíàäëåæàò ðåøåíèÿ
êâàçèëèíåéíîãî óðàâíåíèÿ, òî èñõîäíàÿ çàäà÷à èìååò ðåøåíèå. Òîãäà ìû ãîâîðèì
îá èñõîäíîé çàäà÷å, ÷òî îíà êâàçèëèíåàðèçóåìà ñ äàííîé ëèíåéíîé ÷àñòüþ. Ìû ïî-
êàçûâàåì, ÷òî êâàçèëèíåéíàÿ çàäà÷à èìååò ðåøåíèå îïðåäåëåííîãî òèïà, êîòîðûé
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ñîãëàñóåòñÿ ñî ñâîéñòâàìè ëèíåéíîé ÷àñòè. Åñëè óêàçàííàÿ êâàçèëèíåàðèçàöèÿ âîç-
ìîæíà äëÿ äàííîãî óðàâíåíèÿ ñ ñóùåñòâåííî ðàçëè÷íûìè ëèíåéíûìè ÷àñòÿìè, òî
èñõîäíàÿ êðàåâàÿ çàäà÷à èìååò ðàçëè÷íûå ðåøåíèÿ.

ÓÄÊ 517.927

I. Jerma�cenko, F. Sadirbajevs. Ceturt	as k	artas divpunktu robe�zprobl	emu
atrisin	ajumu tipi: atrisin	ajumu skaita nov	ert	ejumi.

Anot	acija. Tiek p	et	�ta robe�zprobl	ema x(4) = f(t, x) (i), x(0) = x′(0) = 0 =
x(1) = x′(1) (ii). Pie�nemsim, ka vien	adojums (i) var b	ut pierakst	�ts ekvivalent	a form	a
x(4) − k4x = F (t, x) (iii) k	ad	a kompakt	a (t, x)-apgabal	a D (funkcija F ir ierobe�zota) un
kvaziline	ar	as probl	emas (iii), (ii) atrisin	ajumi apmierina nosac	�jumu (t, x(t)) ∈ D ∀t ∈
[0, 1]. �Saj	a gad	�jum	a sak	am, ka s	akotn	ej	a robe�zprobl	ema ir kvaziline	ariz	ejama ar line	aru
da�lu x(4)− k4x. Tad par	ad	am, ja s	akotn	ej	a robe�zprobl	ema var b	ut kvaziline	ariz	ejama at-
tiec	�b	a pret b	utiski at�s�kir	�g	am line	ar	am da�l	am , tad robe�zprobl	emai ir vair	aki atrisin	ajumi.
Tiek analiz	eti ilustrat	�vie piem	eri.
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