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Estimations of the number of solutions to some
nonlinear second order boundary value problems

S. Ogorodnikova and F. Sadyrbaev

Summary. We consider first two the second order autonomous differential equations
with critical points, which allow for detecting an exact number of solutions to the Dirichlet
boundary value problem. Then non-autonomous equations with similar behavior of solu-
tions are considered. Estimations from below of the number of solutions to the Dirichlet
boundary value problem are given.
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1 Introduction

In the work [1, Ch. 15] estimations of the number of solutions to the boundary value
problem

x′ = h(t, x, y), y′ = f(t, x, y) (1.1)

a1x(a)− b1x
′(a) = 0,

a2x(b)− b2x
′(b) = 0

(1.2)

were obtained. These estimations were based on comparison of the behavior of solutions
in some neighborhood of the zero solution and at infinity. Notice that the zero solution
exists since h(t, 0, 0) = f(t, 0, 0) = 0. It is convenient to explain the result of A. Perov in
terms of the angular function ϕ(t), which can be introduced by the relations

x = ρ sin ϕ, y = ρ cos ϕ, ρ2 = x2 + y2. (1.3)

One gets the following equations for the functions ϕ and ρ :

{
ϕ′ = 1

ρ
· [h cos ϕ− f sin ϕ]

ρ′ = h sin ϕ + f cos ϕ.
(1.4)

Let ϕ0 and ϕ1 be the angles which relate respectively to the first and the second of the
boundary conditions (1.2).
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Set
ρ0 =

√
x2(a) + y2(a).

Suppose that a solution ϕ(t) of the system (1.4), which is defined by the initial condition
ϕ(a) = ϕ0 for ρ0 ∼ 0, takes exactly m values of the form ϕ1(mod π). Moreover, assume
that a solution ϕ(t), which is defined by the initial condition ϕ(a) = ϕ0 and which relates
to values ρ0 ∼ +∞, takes n values of the form ϕ1(mod π). Then there exist at least
2|n−m| nontrivial solutions of the problem.

The figure 1 visualizes the case of n = 0 and m = 1. Two possible solutions of the
BVP are depicted by bold lines.

x

x’

Figure 1: Perov’s result (m = 1, n =
0,), bold - orbits of solutions to BVP;
normal - orbits at infinity and at zero.

Due to different rates of whirling of solutions near the zero and at infinity multiple
solutions of the problem appear.

The above mentioned result by A. Perov is much more general than that described by
Fig. 1, since equations in (1.1) are non-autonomous.

Our aim in this paper is the following. We consider the second order equations, which
are equivalent to two-dimensional systems, which are similar to those treated by A. Perov
and which, moreover, can have hetero- and homoclinic type solutions.

Our plan is to consider first autonomous equations which have singular points of the
type center - saddle. This equation has a homoclinic solution and it may have multiple
solutions of the Dirichlet problem.

The results are then generalized to the case of non-autonomous equation, which has a
solution, defined on a finite interval and which possesses some properties of a homoclinic
solution.

Similar situation is considered for autonomous equations which have singular points
of the type saddle - center - saddle. This equation has a heteroclinic solution and it may
also have multiple solutions of the Dirichlet problem.

The results were announced in [3].
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2 Autonomous equations

Consider the equations
x′′ = −x + x3

x′′ = −x + x2 (2.1)

We will show that the Dirichlet boundary value problems for equations (2.1) have different
numbers of solutions.

First consider the problem
x′′ = −αx + x2, (2.2)

x(0) = 0, x(1) = 0, (2.3)

where α > 0 is a parameter.

The equivalent system
x′ = y

y′ = −αx + x2, (2.4)

has a center at (0; 0) and a saddle point at (α; 0). The homoclinic orbit connects the
saddle point to itself. It has “an infinite” period ([2]).

Proposition 1 Suppose that the condition

π2n2 < α < π2(n + 1)2 (2.5)

holds, where n is a non-negative integer. Then the problem (2.2), (2.3) has exactly 2n+1
nontrivial solutions.

Proof. Consider solutions x(t; γ) of equation (2.2), which satisfy the initial conditions

x(0) = 0, x′(0) = γ. (2.6)

Equation (2.4), linearized at zero, takes the form

y′′ = −αy. (2.7)

Solutions of the problem (2.2), (2.6) have exactly n zeros in the interval (0; 1) and
does not vanish at t = 1 for small γ > 0. The parameter γ varies from zero value to γ0,
where γ0 defines a homoclinic orbit. The zeros of solutions x(t; γ) monotonically increase
and leave the interval (0; 1] passing through the right end point as γ → γ0. If for some
γ a solution x(t; γ) has a zero at t = 1, then x(t; γ) is a solution to the boundary value
problem (2.2), (2.3). Thus n solutions of the problem.

Similarly n solutions to the boundary value problem appear for γ ∈ (0,−γ0).
Solutions of the problem (2.2), (2.6) do not vanish for γ > γ0.
Solutions x(t; γ) of the problem (2.2), (2.6) do not vanish also for −γ0 − εγ < −γ0,

where ε > 0 is sufficiently small. If γ continues to change to −∞, for γ large enough in
modulus an extra zero of a solution x(t; γ) appears, which belongs to the interval (0; 1].
This means that there exists some γ1 ∈ (−∞,−γ0) such that a solution x(t; γ1) solves the
problem (2.2), (2.3).
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Hence, we considered 4 regions on a phase plane: two of them inside the homoclinic
orbit, (we discovered 2n solutions of the problem (2.2), (2.3) there) and another two
regions outside the homoclinic orbit. The positive outer region (γ > 0) does not contain
a solution. The negative outer region (γ < 0) yields exactly one solution to the problem.
Therefore the problem (2.2), (2.3) has exactly 2n + 1 solutions. ¤

Consider the problem
x′′ = −αx + x3, (2.8)

(2.3), where α > 0. The equivalent system

x′ = y,

y′ = −αx + x3 (2.9)

has a center at (0; 0) and two saddle points at (−√α; 0) and (
√

α; 0). The heteroclinic
orbit connects two saddle points. The respective heteroclinic solution has “an infinite”
period ([2]).

Proposition 2 Let the condition

π2n2 < α < π2(n + 1)2 (2.10)

hold, where n is a non-negative integer. Then the problem (2.8), (2.3) has exactly 2n
nontrivial solutions.

Proof. Consider solutions x(t; γ) of the initial value problem (2.8), (2.6). Lineariza-
tion of (2.8) at zero yields equation (2.7).

Solutions x(t; γ) of the problem (2.8), (2.6) have exactly n zeros in the interval (0; 1)
and do not vanish at t = 1, if γ > 0 is small enough. The zeros of x(t; γ) increase
monotonically and pass through the point t = 1 as γ increases from 0 to γ0, where γ0

relates to heteroclinic orbit. Any γ such that a solution x(t; γ) has a zero at t = 1, gives
rise to a solution of the boundary value problem. Hence n solutions of the problem.

Similarly exactly n solutions to the problem appear for γ ∈ (γ0, 0).
Solutions x(t; γ) of the initial value problem (2.8), (2.6) do not vanish for |γ| > |γ0|.
Therefore totally the number of nontrivial solutions of the problem (2.8), (2.3) is 2n.

¤

3 Non-autonomous equations

Consider the problem
x′′ = f(t, x), (3.1)

x(0) = x(1) = 0, (3.2)

where function f satisfies the conditions:
(A1) f and fx are C(I ×R)-functions;
(A2) f(t, 0) ≡ 0;
(A3) f(t, x) > c|x|p for t ∈ I, |x| > M , where c > 0, p > 1,M > 0 are constants;
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(A4) there exists a solution η(t) of the problem (3.1), η(0) = 0, η′(0) > 0 such that
η(t) does not vanish in the interval (0; 1];

(A5) there exists a solution ξ(t) of the problem (3.1), ξ(0) = 0, ξ′(0) < 0 such that
ξ(t) does not vanish in the interval (0; 1];

(A6) solutions of equation (3.1) extend to the interval (0; 1].

Theorem 3.1 Let the conditions (A1) - (A5) hold. Suppose that a solution y(t) of the
Cauchy problem

y′′ = fx(t, 0) y, (3.3)

y(0) = 0, y′(0) = 1 (3.4)

has exactly n zeros in the interval (0, 1) and y(1) 6= 0.
Then the problem has at least 2n + 1 nontrivial solutions.
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Figure 2: Visualization of Theorem 3.1.

We need some auxiliary results before passing to prove the theorem.

Lemma 3.1 Solutions x(t; β) of the initial value problem

x′′ = c|x|p, x(0) = −M, x′(0) = −β, β > 0 (3.5)

for β large enough have a minimum at some point T (β) and T (β) → +∞ as β → +∞.

Proof. In order to avoid difficulties manipulating with negative numbers we consider
a symmetric problem

y′′ = −cyp, y(0) = M, y′(0) = β, β > 0, (3.6)

looking for solutions with a point of maximum. Multiplying both sides of the equation in
(3.6) by 2y′ and integrating, one gets

y′2(t)− y′2(0) = − 2c

p + 1

(
yp+1(t)− yp+1(0)

)

or

y′2(t)− β2 = − 2c

p + 1

(
yp+1(t)−Mp+1

)
.
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At a point of maximum T > 0 the relations y′2(T ) = 0 and, therefore,

ymax = y(T ) =

[
p + 1

2c
β2 + Mp+1

] 1
p+1

(3.7)

hold. Then

y′2(t) = − 2c

p + 1

(
yp+1(t)−Mp+1

)
+ β2

and
dy

dt
=

√
β2 − 2c

p + 1
[yp+1 −Mp+1],

dy√
β2 + 2c

p+1
Mp+1 − 2c

p+1
yp+1

= dt,

∫ ymax

0
dy√

2c
p+1

(−M)p+1+β2− 2c
p+1

yp+1
=

∫ T

0
dt = T

∫ ymax

0
dy√

2cMp+1+(p+1)β2

p+1

·
√

1− 2c
2cMp+1+(p+1)β2 · yp+1 =

=
√

p+1
2cMp+1+(p+1)β2 ·

∫ ymax

0
dy√

1− 2c
2cMp+1+(p+1)β2 ·yp+1

=

∣∣∣∣∣∣∣∣

2c
2cMp+1+(p+1)β2 · yp+1 = ξp+1

ξ = p+1

√
2c

2cMp+1+(p+1)β2 y

dξ = p+1

√
2c

2cMp+1+(p+1)β2 dy

∣∣∣∣∣∣∣∣

= (p+1)
1
2

(2cMp+1+(p+1)β2)
1
2
· ∫ 1

0
dξ

p+1
√

2c
2cMp+1+(p+1)β2 ·

√
1−ξp+1

=

= (p+1)
1
2

(2cMp+1+(p+1)β2)
1
2
· (2cMp+1+(p+1)β2)

1
p+1

(2c)
1

p+1
· ∫ 1

0
dξ√

1−ξp+1
=

= (p+1)
1
2

(2c)
1

p+1
· 1

[2cMp+1+(p+1)β2]
p

2(p+1)
· ∫ 1

0
dξ√

1−ξp+1
.

Since the integral

∫ 1

0

dξ√
1− ξp+1

is finite, the expression in the last line tends to zero as

β goes to infinity. ¤

Corollary 3.1 For any t1 > 0 there exists a solution x(t; β) of the problem

x′′ = cxp, x(t1) = −M, x′(t1) = −β, β > 0, (3.8)

such that it has a minimum point at t1 + T (β) and x(t1 + 2T ) = −M, where T (β) → 0
as β → +∞.

Proof. Since equation in (3.8) is autonomous, any function x(t + const) is a solution
if x(t) is. The existence of a point of minimum T (β) follows from Lemma 3.1. Notice also
that the function z(t) = x(t1 + 2T − t) is a solution of the equation. By combining x(t),
defined in the interval [t1, t1 + T ] and symmetric solution z(t), defined in [t1 + T, t1 + 2T ],
a solution x(t; β) can be obtained. ¤
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Lemma 3.2 Suppose the conditions (A1) and (A3) hold. Then solution x(t; α) of the
Cauchy problem

x′′ = f(t, x), x(0) = 0, x′(0) = α (3.9)

vanishes at some point t1(α) ∈ (0, 1) for α negative valued and large enough in modulus.

Proof. Equation y′′ = cyp written in polar coordinates y = % sin Φ, y′ = % cos Φ
looks like {

Φ′ = cos2 Φ− c%p−1| sin Φ| sin Φ,
%′ = % sin Φ cos Φ + c%p| sin Φ| cos ϕ.

(3.10)

Equation x′′ = f(t, x), where by the condition (A3) f(t, x(t)) = cxp(t) + ε(t) (ε(t) ≥ 0)
for any solution x(t) such that x(t) < −M, for respective t takes the form

{
ϕ′ = cos2 ϕ− cρp−1| sin ϕ| sin ϕ + ε(t)

ρ(t)
sin ϕ,

ρ′ = ρ sin ϕ cos ϕ + cρp| sin ϕ| cos ϕ + ε(t) cos ϕ,
(3.11)

where
x = ρ sin ϕ, x′ = ρ cos ϕ. (3.12)

We are interested in negative solutions y(t) and x(t). Therefore angular functions Φ(t)
and ϕ(t) can be considered in the interval (π, 2π) and, therefore, all the addends in the
right sides of (3.10) and (3.11) are non-negative.

The assertion of Lemma can be proved by comparison of the angular functions Φ(t)
and ϕ(t). Alternatively the technique of the work [4] (Lemmas 4.1 and 4.2) can be applied
to prove Lemma 3.2.

Proof of the theorem. We will use the polar coordinates introduced by (3.12).
Notice that ρ(t) cannot vanish for nontrivial solutions since x ≡ 0 is a solution. Equation
(3.1) in polar coordinates takes the form

{
ϕ′ = cos2 ϕ− 1

ρ
· f(t, ρ sin ϕ) · sin ϕ

ρ′ = ρ sin ϕ cos ϕ + f(t, ρ sin ϕ) · cos ϕ

The linear equation of variations (3.3), converted into polar coordinates using the
formulas

y = r sin Θ, y′ = r cos Θ,

turns to {
Θ′ = cos2 Θ− 1

r
· f(t, r sin Θ) · sin ϕ

r′ = r sin Θ cos Θ + f(t, r sin Θ) · cos Θ

Consider solutions x(t, α) of the initial value problem (3.9). For α ∼ 0 solutions
x(t, α) stay in a small neighborhood of the trivial solution. Functions ρ(t; α) and ϕ(t; α)
tend uniformly in t ∈ [0, 1] respectively to r(t) and Θ(t) as α → 0. It follows from the
conditions of the theorem that x(t, α) has exactly n zeros in (0, 1) and x(1; α) 6= 0 if α is
small in modulus.

Consider now several cases.
Case 1. α ∈ (0, η′(0)). One has that ϕ(1; α) ∈ (π

2
n, π

2
(n+1)) for small values of α. Let

αη relates to a solution η(t). This solution by the condition (A4) does not vanish in (0, 1].
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Then the function ϕ(t; αη) does not take values of the form π
2
( mod π). Since ϕ(t; α)

continuously depends on α there exist values αi (i = 1, . . . , n) such that ϕ(1; αi) = π
2
i.

Hence at least n solutions of the BVP.
Case 2. Similarly at least n solutions of the problem (3.1), (3.2) for α ∈ (ξ′(0), 0).
Case 3. Let α ∈ (−∞, ξ′(0)). Since solutions of the initial value problem (3.9) for

α ∈ (ξ′(0) − ε, ξ′(0)) do not vanish for ε > 0 small enough, the respective values of the
angular function ϕ(1; α) ∈ (π, 2π). Since for some solution of the IVP (3.9) there exists
a zero in the interval (0, 1), the function ϕ(1, α) attains values greater than 2π for some
α ∈ (−∞, ξ′(0)). Then there must exist a value α0 ∈ (−∞, ξ′(0)) such that ϕ(1; α0) = 2π.
Hence a solution to the boundary value problem.

Summing up, one concludes that the BVP under consideration has at least 2n + 1
nontrivial solutions. ¤

Remark 3.1 The assumption (A6) is technical and the results are true also if non-
extendable solutions are allowed.

Remark 3.2 Since the second autonomous equation in (ref2 1) meets all the conditions
of Theorem 3.1 the above estimate of the number of solutions is sharp.

Consider the problem (3.1), (3.2), where f satisfies the conditions (A1), (A2), (A4),
(A5), (A6) and (A3) is replaced by (B).

(B) xf(t, x) > 0 and |f(t, x)| > c|x|p for t ∈ I, |x| > M , where c > 0, p > 1,M > 0
are constants;

Theorem 3.2 Let the conditions (A1), (A2), (B), (A4), (A5) hold. Assume also that
solutions y(t) of the Cauchy problem

y′′ = fx(t, 0)y (3.13)

y(0) = 0, y′(0) = 1. (3.14)

have exactly n zeros in the interval (0, 1) and y(1) 6= 0.
Then the problem has at least 2n nontrivial solutions.
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Figure 3: Visualization of Theorem 3.2.

The proof is similar to that of Theorem 3.1 and we omit it. The remarks analogous
to Remark 3.1 and Remark 3.2 are true.
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Ñ. Îãîðîäíèêîâà, Ô.Æ. Ñàäûðáàåâ. Îöåíêè ÷èñëà ðåøåíèé íåêîòîðûõ
íåëèíåéíûõ êðàåâûõ çàäà÷ âòîðîãî ïîðÿäêà.

Àííîòàöèÿ. Â íà÷àëå ðàññìàòðèâàþòñÿ äâå êðàåâûå çàäà÷è ñ óñëîâèÿìè Äèðèõëå
äëÿ àâòîíîìíûõ óðàâíåíèé ñ êðèòè÷åñêèìè òî÷êàìè, äîïóñêàþùèìè îöåíêó ÷èñëà
ðåøåíèé. Çàòåì èçó÷àþòñÿ íåàâòîíîìíûå óðàâíåíèÿ ñî ñõîäíûì ïîâåäåíèåì ðåøåíèé.
Äàþòñÿ îöåíêè ÷èñëà ðåøåíèé çàäà÷è Äèðèõëå.

ÓÄÊ 517.51 + 517.91

S. Ogorodnikova, F. Sadirbajevs. Otr	as k	artas neline	aro robe�zprobl	emu
atrisin	ajumu skaita nov	ert	ejumi.

Anot	acija. S	akum	a divas neline	aras robe�zprobl	emas tiek apskat	itas otr	as k	artas difer-
enci	alvien	adojumiem ar kritiskiem (singulariem) punktiem. Ieg	utie rezult	ati tiek p	arnesti
uz neautonomiem diferenci	alvien	adojumiem . Noformul	etas divas teor	emas par robe�zprobl	emu
atrisin	ajumu skaitu.

Institute of Mathematics Received 31.03.05
and Computer Science,
University of Latvia
Riga, Rainis blvd 29
felix@cclu.lv

Daugavpils University
Department of Natural Sciences
and Mathematics
Daugavpils, Parades str. 1
svetlana_og@inbox.lv


