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Summary. We consider the nonlinear equations of the form

_4a
Cdt’

2" = —q(t)|z)*z, ' >0, qeC(R,(0,+0)), (1)
where ¢(t) are some specific t-dependent functions such that explicit formulas for solutions
can be given. We study properties of solutions, construct principal and non-principal (in

the sense of Hartman) solutions and compute the characteristic numbers introduced by
Nehari.
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1 Introduction
We consider the Emden — Fowler equation
v" = —q(t)|z|**z, >0, (2)

where ¢(t) is a positive valued continuous function. The theory of such equations is rich.
The interested reader may consult the book [10] for some basic facts. Any nontrivial
solution z of (2) satisfies the inequality xz” < 0 if x # 0. This means that solutions
are convex towards the outside. Equations of the type (2) are known to have oscillatory
solutions (that is, solutions with infinitely many zeros), nonoscillatory solutions (that is,
solutions with at most finite number of zeros), solutions tending to a linear function at
infinity (including constants), singular solutions of superlinear character (that is, solutions
which behave on a finite interval like the function ¢sin %), singular solutions of sublinear
character (that is solutions, which smoothly “enter” the trivial solution etc. So, despite of
its relatively simple structure, the Emden — Fowler equation (2) contains a lot of examples
of different kind solutions.

Some regularity is brought to the theory of the Emden — Fowler superlinear equation
by the results of Nehari ([2], [3]), which are variational in nature. Brief description of
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the Nehari theory is given in the fourth section of this work. Other sections deal with
basic formulas for solutions of both the initial value problem and boundary value problem
(Section 2), examples of the so called principal and non-principal solutions in the sense
of Hartman (Section 3), the characteristic numbers A, (a,b), introduced by Nehari and
called in this text by the Nehari numbers (Section 4).

2 Formulas for solutions

2.1 Initial value problem

Consider the initial value problem

k
Ve @ =0, d) =6, k>0, (3

where £(t) := pt + ¢ > 0 on the interval of definition.
Let S(t) stand for a solution of the Cauchy problem

u’ = —(e+ 1)|u/*u, u0)=0, «(0)=1. (4)

Notice that S(t) is periodic with period depending on . The following statement gener-
alizes the respective result in [13].

Proposition 2.1 Solutions x(t; 3) of the problem (5), where 3 > 0, are given by the
formula

1 1 e 1 t—a
x2(t) = B=+irz2(pt + q)S e+l 2612 , 5
(t) =0 (pt +4q) (ﬁ qu) (5)

where
r:(paJFQ)k(ngl). (©)

Proof. A solution u(t) of the problem

u" = —klul*u, wu(a)=0, u(a)=082>0,
where k > 0, is given by
u(t) = Bk = (e 4+ 1)=0 8 (ﬁiEﬁ(e F1)ERE( a)) ,

where S(t) is described above.
We are looking for a solution of (3) in the form

x(t) = E(thu(w(t)),
where £(t) > 0 for ¢ € [a,b]. Then

dx B % du dw
P L CLO) RO s



Pr d%¢ dédw  dPw)\ du dw\?* d*u
—= = yu(w(t 2o i | 4 ) [ — ) —.
a2 = et (®)+ ( gt dt + dt2) aw &0 (dt) du?

Suppose that £(t) and w(t) are such that
é—/l — O7 Zé-lwl + é—w/l — O

and w(a) = a, w'(a) = % Evidently £(t) = pt + q.
One has that:

#'(a) = (a)u(w(a)) + (o) (w(a))w'(a) = E(a)ul(a) 7~ = 6.

We wish to define a function w(t) now. Consider two cases.
A) Case £ #0, or p # 0. One has subsequently that

28w +&w” =0, 2pw' + (pt+ @Quw" =0, 2pw+ /(pt + Q)" dt = ¢4,

u=npt+q

/(pt + qu"dt = /udv = dcffju::zf’fiatlt =uv — /Udu

v=w

=(pt+qu —p / w'dt = (pt + q)w' — pw,

dw
2pw + (pt + q)w' — pw =c¢1, (pt+q)w' =c; —pw, (pt+ Q)E = ¢ — pw,

dv  dt ld(a —pw) 1 d(pt+q)
a—pw pttq¢ p a-pw p pttg
—In(c; — pw) =1In(pt + q) + Ince, In(c; — pw) = —Ineca(pt + q)
1 C1 1

w(t) = — —

ca(pt +¢q)’ p o capb(t)

w'(t) = —glp (wlt))/ = _glp (‘?@%) - 02p§2(75) - 0252“)

c—pw =

S o) — L S N | _ 1 -
Taking into account that w'(a) = £y One obtains fa) = af@ and ¢y = Ok Notice
that w(a) = a, then
C1 1
a=————->, C=1+ap.
p @PE(Q)
One obtains
1+ pa 1 1 a
w(t) = — 2% P
a fayPE(t) p ps(t)
t) — t — t— t—
W€ optteg-(pateg o plt-a) - t-a

p&(t) pt+q p(pt +q) pt+q



and, finally,
w(t) = a+ - (7)
pt+q
B) Case ¢’ = p = 0. Notice that ¢ # 0. Then w” = 0 and w(t) = c1t + o, W'(t) = ¢;.
It follows from w'(a) = ﬁ = % that ¢; = %. One has from w(a) = a that

a a
a=—+¢C, C=a——.
q

At the end w(t) = é +a— ¢ and

Since (7)) contains (8)), in any case, either £ # 0 or ¢ = 0, the relation (7) holds.

It follows from

2 = 5w/2u1/ _ gw/Q(_Eu%—i—l) _ _nga el _ _~w_/2x2a+1 _ (t) 2e+1
- - - £2e+1 - £2e = —a)T ’
that . ( )
~W t—a pt+qg—(t—a)p
qt) =k—, w(t)=a+ . w'(t) = ,
() £ ) pt+gq ) (pt + q)?
pa+q _(pa+q)® _&(a) o) = k& (a)
€2 HA(t)

w(t) = (pt + q)?’ wi(t) = (pt+q)* &)’

Therefore a solution z(t) of the problem

ZE” k€2(a) 2e x(a) _ 0’ x’(a) — ﬁ Z 0

T,

- £25+4(t)

is given by

or
-~ 1 e ~_1 1 t_
z(t) = geil k™2 (e + 1)ﬁ(pt +q)S (55+1]{;25+2(g + 1) = <a + t——i—a _ a)>
ptT4q

or
1~ 1 1 e ~_1 1 t—a
t) = Bk =z (e + D)=z (pt + ¢)S | Brikz=rz (e + 1) =0 .
oft) = B e 4 D+ (R (e 1) L20)
Choose "
k= .
§*(a)
Then a solution z(t) of the problem
" k 2e+1 /
W=t a(a) =0, o(a) =0

(pt + q) 2e+4



is given by

_2514—2 1
o) DRt
. k 2sl+2 1 t—a
.S TS R P — 1) 2e+2
(ﬁ+ ((pa+q>2) ey pt+Q>

1 1 e 1 t—a
x(t) = B=+irz2(pt +q)S e+l 2612 ,
(t) =5 (pt +q) (6 o q)

or

where
(pa+q)°(e+1)

k
Remark 2.1. Solutions of the problem (3) for 5 < 0 can be obtained from the formula (5)
also since for any solution z(t) of the equation (2) the function —xz(¢) also is a solution.

Corollary 2.1 Suppose that the function pt + q in (3) is increasing for t > a (and
coefficient q(t) is, respectively, decreasing). Then intervals I; between two consecutive
zeros t;—1 and t; (if any) of a solution x(t;B) increase, as well as absolute values of
magnitudes of x(t; B) in I;.

On the other hand, if the function pt + q in (3) is decreasing for t € [a,b] (and
coefficient q(t) increasing). Then intervals I; between two consecutive zeros of a solution
x(t; B) decrease, as well as absolute values of magnitudes of z(t; 3) in 1.

If p = 0 (the function pt + q reduces to a constant), then x(t; 3) is periodic with the
half period T = %, where

1
du e 1
A:/\/l—u2s+2’ p =Bl - (9)
0
Proof. Follows immediately from (5)).
Remark 2.2. The assertion above follows also from the general theory of the Emden —

Fowler equation (see, for example, [§]).

Corollary 2.2 The zeros t; (if any) of a solution x(t;[3) are monotonically decreasing
functions of 3 > 0.

Proof. The zeros t; of x(t; 5) can be found by analysis of a function S ( p;;_aq> . The

zeros t; are to be found from the relations
l; — S
p azQAz, 1=1,2,...,
pti+4q

where A and p are as above. Notice that 7; := 2A: are zeros of S(t).
Computation gives
pa+q

t;, = 2Ai————.
a+ Zp—2Aip

< (10)
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Figure 1: Solution of z” = —ﬁmzx, z(0) =0, 2/(0)=133.1.

2.2 Boundary value problem
Consider the problem

k
= —————|z|*z, z(a)=0, x(b)=0, 11
(pt+q)25+4| | (a) (b) (11)
where £(t) = pt + g > 0 in the interval [a; b].
The statement below follows from the results of precedent subsection.

Proposition 2.2 The problem (11) has (up to multiplication by -1) infinitely many so-
lutions, which are given by the formula

c t—
olt) = et 4 )8 (pefir e L2 ) (12)

For any positive integer n there ezists a solution x,(t) of the form (12)) with
e+1

1 b € e+1
B =r (pb “’) (24n) %, (13)
—a

which has exactly n — 1 zeros in (a,b):
th=a<t;<ty<---<t,=0,

pbtq
nas——= +1q

= — (i=0,1,...,n).
n’;bff —ip
2.3 Non-monotone coefficients
Consider the problem
k
"= |2€I, z(a) =0, z(b) =0, (14)

where (1) is a piece-wise linear function composed of two linear segments.
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Let 0 < a < ¢ < b. Consider the functions
Gt)=pt+q¢ >0, a<t<ec,
E(t) =pat +q2 >0, c<t <D,
pc+q =&(c) =m = &(c) = pec+ o,
no = &1(a) =pra+qi, 12 =&(b) = p2b+ qo.
The respective problem is

" = —q(t) |z[*z, x(a)=0, xz(b)=0,

where

[ qu(®), for a<t<eg,
q(t) = { q@2(t), for ¢ <t <b,

O L S a<t<e

0= G G 51
k k

QQ(t) = = c<t S b,

(52 (t) ) 2w (pgt + q2)26+4 ’ >

the coefficient k > 0.

(15)

The function ¢(t) so defined is continuous and positive valued in [a; b].

A Yy
m = &i(c) = &(c) "7’\\
[\vg <
’é)X v”@
A N
2
& i
T2 = gZ(b) ,\)/
o = &(a)

t

0 a c b "

Consider the problem (15), where function ¢(¢) is continuous and positive valued. We

are looking for solutions z(¢) with the property that

z(c) =0, 2'(c)=0 (16)
The problem (15) decomposes as follows:
k 2e+1
(A1) af= i ) T @i(a) =0, @i(c) =0, (17)
k
(Ag): o= ———— a5t 3y(c) =0, x5(b) =0. (18)

(pat + go)% 4 2
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We wish solutions 1 (t) and xo(t) to satisfy the smoothness condition (16).
Let ny and ny be two positive integers.
A solution of (Ay) has the form:

s ——1_ t—a
t . S+l 25+2 t S =1 2e+2 __~ T
z1(t) = sign(B1)|r[=r{" (pit + @) <Wl‘ " pit + Ch) 7

where
e+1

a+q)e+1 c+ E B
= OEBTEED g = (REER) T (e

Function x;(t) has exactly (n; —1) zeros in the open interval (a;c). The derivative is given
by

e —5is T—a
x(t) = sign(51)|5 E+1T25+2p5<ﬁ Sy 2”2—)4—
1 () gn(o1)|61] 1 15 {14 1 it +aq

I S
+ 515’ (|51|E“7'1 e - ) alatty

mt+a ) pt+a
A solution of the problem (Aj) has the form:

e -1 t—c¢
A = g s+1 25+2 t S e+l 2e+2
To(t) = sign(B2)|Ba| =15 (pat + ¢2) <‘52‘ "2 p2t+Q2> 7

where

o (p2c+ @2)*(e + 1) (P2b + g2
) = P25 T 92

e+l
€ e+l
EED = (2E2) T an,

Function x4(t) has exactly (ny — 1) zeros in (¢, b). The expression for derivative is

e -1 t—c¢
) t o +1 2s+2 S =T 2e+2 _ °~ 7
() = S I s ([l P )

e -1 t—c c+
+ (25" (‘52‘5“7“2 e ) Lot T 2

pat+q2) pat + @
One obtains that

1 e -t c—a
x/1(0> = s1gn(61)|61|5+17,125+2 nS <|51|5+1T1 2a+2—> n

pic+ qq
== R G pia+ q1
+5 S/ (/8 e+l 2e+2 ) _
1 |51 1 et a ) metam
= sign(B)|61 707 puS (2Am,) + 51" (24ny) PO
p10—|— 1
Notice that -
=| S@Eam)=0, |=p-ymPtTE
S (24n,) = (=1)™ pic+ q1

that is,
pia+ q1
2 (c) = Bi(=1)" ———.
L(0) = (-1
Similarly 5 (c) = fs.
We can formulate now the result.
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Proposition 2.3 The relation x(c) = x4 (c) holds iff

pia+q . Mo
— By (=) PR patds, By = By (—1)m R 19
Ba = B1(—1) et Ba = F1(—1) " (19)
or

|pla +‘Q1
c+q

sign(f) = (=1)™" sign(/).

Let us discuss the first condition (20). One has that

62| = |61 . that is, |Ba] = |6y %
1

(20)

pia+q
|ﬁl| - _'_ - ‘BQ';
e+1 e+1
T% peta) - (2An1)%1p—1a Ta_ Té p—zb LAY (2An2)5t1
! c—a pPic+q 2 b—c ’

e+1
(ma+q)*(e+1) pctaq © 54 st1p1a+qp
k c—a (24n,)
p10+Q1

e+1
ﬁ_ 5'+‘1 b'+ € e+1
= ((P2C Q2k) ( )) (P2b_CQ2) (2An2) + 7

e+1 e+1

1 (pict+q) ° Hipiatq 1(pbtg) ¢ et
+g): [ B—2 CR b L +ogo)e [ 222 c
(p1a +q1) ( c—a ) 1y e+ (p2c + ¢2) ( b_ ¢ U
e+1 e+1
1 1 Jsr sil 1 1 pzb + g9 % sil
(pia+q1)¢ I n® (piet+q) = T = (pc+ )¢ b_c U

Recall that pic+ q1 = poc+ g2 and =22 — 1 =1, then

el 1
(prc+aq1) = b= (p2c + q2)=.

Therefore
e+l etl
= (pla + ql) R (p2b+ fh) f
ne | — = N, ;
c—a b—c
and n b
ny paTa N9 PO T % that is, ny o _ N9 2 . (21)
c—a b—c c—a b—c

If any of the conditions (21) holds then the condition (19) is satisfied.
We have proved the following statement.
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Proposition 2.4 A solution of the problem (15) can be composed of solutions x1(t) and
xo(t) of the problems (Ay) and (Asg) respectively, iff

ny b—c
P2b+(12:—1
Ny C—a

sign(fz) = (—1)" sign(f1),

(pla + CI1)7

or, equivalently,
n b—c

e = Mo,

Ny C—a

sign(By) = (—1)™ sign(B,).

3 Principal and non-principal solutions
A solution of a linear second-order equation
" = —p(t)z (22)

is called non-oscillatory, if it has at least finite number of zeros. Then, by Sturm zero
separation theorem, any other solution also has at least finite number of zeros. Equation
(22) is called therefore by non-oscillatory if all solutions (or, equivalently, one solution)
are non-oscillatory. It is known ([7, Ch. XI, § 6]), that a non-oscillatory equation always
possesses two solutions zo(t) and z;(¢) with the properties

/m%:oo, (23)

/ # < 0. (24)
1 (t)

These solutions are called principal and nonprincipal ones respectively. We will show that

the nonlinear equation (3) with increasing function pt + a have solutions which satisfy

either the condition (23)) or (24). Thus they are nonlinear analogues of principal and

non-principal solutions.

Consider the Cauchy problem (3), where pt + ¢ increases. Notice that solutions z(t; 3)
for any nonzero (8 have only finite number of zeros ¢;, which are given by the relations
(10).

One has two cases to be analyzed.

t—a

Case 1. Suppose that the number 2 = lim p is not a zero of the function S(t).
P tojoo! PG
t—a

Then z(t; 5) has the zeros t;, which can be found from the equations Prite = Tis where
7; = 2Ai are the first zeros of S(¢), less then the limit £. The function z(¢; §) is then linear
at infinity, namely,

and

#(t; B) = G7TrE (pt + )8 (g) .
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Case 2. If 1’—; = 2Ai for some 1, then

Jim (s §) = (~1)r LD

or

lim z(t; 8) = (—1)"" (24i(pa + q))% (p2(5 + 1))25 |

t——+o0 k

This can be shown by application of the I'Hospital rule to the formula (5).
We summarize the results of this section in the following statement.

Proposition 3.1 There exist positive numbers 3;, © = 1,2,... such that the solutions
x(t; B;) have exactly i — 1 zeros in (a,+00) and tli+m x(t; B;) = const.

Solutions x(t; 3) for remaining positive values of 3 tend to linear functions ast — +o0.
For any positive integer i there exist solutions x(t; ), which have exactly i — 1 zeros in
(a,+00) and tend to linear functions.

Notice that those solutions z(t; 3), which tend to constants, satisfy the condition (23).
Other nontrivial solutions satisfy the condition (24)).

4 Nehari numbers for non-autonomous equations

4.1 Brief overview of the Nehari theory

Consider differential equations
" +xF(t,z*) =0 (25)

and
2" + P(t)x + xF(t,2*) =0, (26)
where
(A1) F(t,s) € C((0,400) x [0,+00), R);
(A2) F(t,s)>0fort >0, s>0;
(A3) t3°F(ty,s) > t1°F(t1,s) for 0 <ty <ty < 00, fixed s > 0 and some € > 0.
A special case of equation (25) is that of the Emden — Fowler type equation

2" = —q(t)|z|*z, >0, geCO(R,(0,+00)). (27)

The general theorem was proved in [3, Theorem 3.2].
Theorem 4.1 Let T, denote the class of functions x(t) with the following properties: x(t)
is continuous and piecewise differentiable in |a,bl;x(a,) = 0(v = 0,1...,n,n > 1, where

the a, are numbers such that a = ag < a1 < ... < an_1 =b; forv=1,... n, but x(t) £0
in any interval [a,_1,a,], and

/ YRy di = / YR F(L 220 dr, (28)
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where F is subject to the conditions (A1)~ (A8). Set G(t,y) = [ F(t,s)ds.
The extremal problem

/b[x'2 — G(t,2H)]dt = min = \,, x(t) €T, (29)

has a solution x,,(t) whose derivative is continuous throughout [a,b], and the characteristic
values A, are strictly increasing with n. The function x,(t) has precisely n — 1 zeros in
(a,b), and it is a solution of the differential system

o’ +xF(t,2*) =0, z(a)=ax(b)=0. (30)

Proposition 4.1 ([3], Lemma 3.1) The following properties of characteristic numbers
An(a,b) are valid.

1) If a < a3 < by <D, then M\,(a,b) < A\, (a1, by);

2) and \,(a1,b) — +o0 as by —a; — 0;

3) An(a,b) continuously depends on both a and b.

Proposition 4.2 ([3], [6]) If F(t,s) < Fi(t,s) fort >0, s > 0, then A\,(a,b) > X (a,b),
where X, (a,b) is a characteristic value for the equation x” + xF(t, z*) = 0.

4.2 Emden — Fowler equation

The Nehari theory is applicable to the Emden — Fowler type equations of the form (27).
Proposition (4.2) states as

Corollary 4.1 If q(t) < q(t) for t > 0, then \,(a,b) > X (a,b), where A\,(a,b) and
X (a,b) are characteristic values for equations (27) and x" + q,(t)|x|*z = 0 respectively.

The extremal problem (29) for the case of equation (27) takes the form:
b
H(z) = / [0 — (14 &) q(t)a®%] di — inf (31)

over all functions z(¢), which are continuous and piece-wise continuously differentiable in
[a, b]; there exist numbers a, such that

a=ayp< a1 <...<@p_1=0b;

forv=1,...,n, z(a,) =0 but  #Z 0 in any [a,_1,a,], and
/ 2 (t) dt = / q(t)z?|z|* dt. (32)
ay—1 ay—1

The respective extremal functions z,,(t) are solutions of equation (27), vanish at the
points ¢t = a and ¢ = b, have exactly n — 1 zeros in (a,b) and satisfy the condition

b b
/ x" dt :/ q(t)z?|z|* dt. (33)
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By combining (32) with (33)) one gets

3

b b
Aﬁmmzﬁggﬂwyzﬂggzl+€[:qwﬁ”%uzligla@@dt (34)

Thus the characteristic number A, (a,b) is up to a constant the minimal value of
f; 2"%(t) dt over solutions of the boundary value problem

v = —q(t)|z)*z, x(a) =x(b) =0, x(t)hasn — 1 zeros in (a,b). (35)

We will call the characteristic numbers A,, by Nehari numbers in the sequel.
Remark 4.1. Nehari numbers \,(a,b) are not uniquely defined by the interval (a,b). It
was shown in [6] that there exist equations of the type (27), which have more than one
Nehari solution for certain a and b.

4.3 Monotone coefficients
Proposition 4.3 The Nehari numbers for the problem

k .
V= e, () =0, () =0 (36)

are given by

o =

(e+1) veir 1 ((patq)(pb+q)\ <
An(a,b)_%(mn)%ﬁ%i(pa bqp q> .
— Qa

Proof. It was shown above that
b
5u+@{/wﬁ:Mm@. (37)

Notice also that

a; a;

2 2 2 [ k%

aj—1 aj—1 Ai—1
Consider a solution z(t) of the boundary value problem (36)), which satisfies the relation

1 1 B 1 t—a
t) = Berirzr2(pt + q)S iy 2e42 , ") =3 > 0,
x(t) = B=1r=e2 (pt + q) (ﬁ r qu) #(0) =062

where r and A were defined earlier. This solution has exactly (n — 1) zero in [a;b], if 3
satisfies (13).
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We wish to compute the indefinite integral in the right side of (38). One has that

Sipme e 1))\ T2
/{x25+2(t) (ﬁa+17’25+2 (pt + q)S </65+17’~ 313 ;t_—&-q>) dt
/W = k/ (pt + q)2=+4
R Gl =
=k
/ (pt + q)2=+4
b /825+2 (gﬁfﬁﬁ) gt
= r
(pt + q)?
t—a

e 1
ﬁe+1r 2e+2 =z

pt+q

ﬁ?slr_ﬁ d o = dz
pt+q

dt = 35175 (pa + q) "L (pt + ¢)2dz

_ / S§%2(2)B 7= (pa 4 q) 7 (pt + 9)*d=
(pt + q)?

= kﬁQTﬁff%rﬁ(pa +q)7t / S%2(2)dz.

Let us proceed with computation of the integral / S%%2(2)dz. Recall that
S/Q(Z) —1— SQE+2<2).
Then

/ S?(2)dz = / S'(2)S'(2)dz = / S'(2)d(S(2)) = / udv

u=2S5"(z) du=5"(z)dz :uv—/vdu

dv=dS v=>S5

§(2)S(z) - / S(2)S"(2)dz

_ §(2)S(2) — / S(2)( = (e + 1)S**(2))dz
S'(2)S(t) + (= + 1) / S242(2)ds
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and / (1— 8% 2(2))dz = 2 — /S2€+2(Z)dz'

Therefore

S'"(2)S(z) + (e +1) / S*2()dz = 2 — /SQE+2(Z)dZ,

S'"(2)S(z) —z=—(e+2) / S%E2(2)dz,

and, finally,
1

/52”2(2)(12 =3 (z = 5'(2)5(2)).

Thus

ka?2(t) dt — kB2 B = p s -1 [ g2e42(,) 4
itz @™ B7r~= 1> (pa + q) (2)dz

kB T e (pa+ q) 7 2 =

1
kB =1t oers

= T (e+2)(pa+tq)

+2 243
k3 o1 7«2;—2

~ (e+2)(pa+q)

W= ,
e f2)(pa +q) (== 5(=5()

e+2 2e+43
_ kﬁ5+17"25+2 6€j_1r_ﬁ
(e +2)(pa+q)

. t— . t—
- (ﬁsﬂ?ﬂ_%lﬁpt +C;> o (ﬂsw_%lﬂpt +Z>} = 20

Then [ X200~ ) — a(a). We n he formul
en Rrrw=s t = ®(b) — ®(a). We have got the formula

pt+q

Anla,b) =

[®(b) = @(a)] = [@(b) — 0] = ®(b).

e+1
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Final computation gives

e+2 2e43

k‘|/6|€+17"2€+2 |: e 1 b—a

(e+2)(pa+q)
b—a c 1 b—a
S iy 2et2
pb+Q> (Iﬁ| o pb+Q)]

_ S’ (|ﬁ|si17“_2sl+2
[2An — S" (2An) S (2An)]

o(b) =

e+2 2e+3

k|ﬂ|€+17“25+2
(e +2)(pa+q)
e+2 2e+43

B ]{;|ﬁ| eF1p 242
e+ 2)(pa+q)

e+2 2e+43

k‘|/8‘s+17"26+2
(e+2)(pa+q)

[2An — 5" (2An) 0] = 2An

2e+3 e+1
krae+2

e+2
1 b € £ o
= 2An | r2 <p i q) (2An) &
(e +2)(pa+ q) b—a
e+l 42

e e+l e+2 el e42
) r2EEED (2An) = e
2e+43

e+2
kraet2

2 (ph+q)\ ¢
(6+2)(pa—|—q)( n) b—a
e4+2

pb+q\ °
b—a

2e+3

B kr2e+2 n(pb+q
(e +2)(pa +q) b—a

e+2
r2e(e+1)

k 2e+43 +

e4+2 2e+2
r2e+2

%G+ (2An) "=

~ (e+2)(pa+q)

2e+3 1
7"25+2 =r 7"25+2

42 1
2e(e+1) —

243 +

e4+2 1
r 2e+42 +

2e(e+1) = p r2e+2

€ ck

+1

g 2e42

(2An) =

(e+1)(e +2)

kr ré(pa +q) ' =k(pa+q)'r

k™= (pa+ q)

= k(pa+q)~'(pa+q)* =

= k' (pa + q)

e+2

k_%(pa + q)iﬂ(s +1) =

= (e+1)

25+1

(e+1)

e+1
e

e+1

pb+q\ °
b—a

-+ [pmspen)

e+1 ., e+l

€ k‘ €

e4+2

e+1
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(24n) kT (e 1) ((Pa+q)(pb+q))2

5+2 b—a
1 et2
1): . <
:€(8+ ) (2An)2 +2k 1 (pa+q)(pb—|—q) ‘ <
e+2 b—a

4.4 Final remarks

Remark 4.2. Denote by X(t) a solution of the problem (14), smoothly composed of
solutions z1(t) and x5(t) of the problems (17) and (18) respectively. Recall that z; and xo
are supposed to have n; — 1 and ny — 1 zeros in the intervals (a, c) and (¢, b) respectively.
Since they are the only solutions with the prescribed number of zeros, certainly they are
the Nehari solutions. The respective Nehari numbers are

1 : e+2
A (a,¢) = SEF D 0 4y 2220 (w q)(pic + q1>)
€+2 c—a
and B
8(5 -+ 1)% 2e42 (pQC —+ q2>(p26 + q2) —~
=— (24 € .
>\n2 (Ca b) s+ 9 ( ng) k < b .

One can show by computing that the value Ay :=¢(1+¢)~ f X"(t)dt is given by

Ay = )\n1<a7 C)+)‘n2 (C’ b) =

(e + 1)} (ma+aq)(pA+q))* e
ele € 25+2 1 p1a q1)(p q € 42
e (PRI T )

where N = n; + no. Evidently
AN 2 )\N(Qa b)a (39)

where Ay(a,b) is the respective Nehari number. It is very plausible that the equality is
valid in (39).

Remark 4.3. 1t appears that for any ¢ = 1,2, ..., n the relations

b b , k| 8| 22
/ 2?dt = / rF(t,z%)dt = ®(t;) — ®(t;1) = 2A = const,
ti—1 ti—1 (E + 2) (pa + Q>

hold, that is,

t1 to tn
/ 22dt = / 2Pdt = = / 22dt,
to t1 tn—1

where ¢; are the zeros of a solution x(t). In view of the monotonicity of the functions ¢;(/3)
a solution z(t) with exactly n — 1 zero in the interval [a, b] is unique. The reduction of
x(t) to any of the intervals [¢;_1, ;] is a Nehari solution also and it follows from (37) that
Mti1,t;) =e(1+¢e)7? ti; 2'?(t) dt. Thus a Nehari solution for the interval [a,b], which
has exactly n — 1 zeros in the interior and which relates to the Nehari number A, (a, b), is

combined of Nehari’s solutions on the intervals [t;_1,;], which do not vanish in the open
intervals (¢;_1,t;) and which relate to the Nehari’s numbers A(¢;_1,¢;). The relations
)\(CL, tl) = )\(tl,tg) =...= )\(tn_l, b) (40)

hold. It is of interest either this is true for more general coefficients ¢(t).
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A.C. I'punanc, @.2K. Cagpipbaen. {BHBIE perlieHus HEABTOHOMHBIX yPaBHEHUTIA
Tuna dMmaeHa — Paysepa.
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Awnnortamnus. PaccMarpuBaioTcsd HeJTMHEHHbIE YPABHEHUS BHA

d
no__ 2e I
Tr = _Q<t)’x| ZL', - aa 5>07 qEO(R7 (07+OO>>a
riae q(t) — HEKOTOpbIE ClIelIhaJIbHbIE t-3aBUCUMDbIE (byHKI_[I/II/I, AJ1d KOTOPbIX fAABHbIC (bOpMy.HbI
pe]_HeHI/Iﬁ MOT'yT 6bITI:> HOJIYyY€HBbI. I/ISy‘{aIOTCH CBOICTBA peHleHI/Ifl, KOHCTPYUPYIOTCA I'NIaBHBIE
N HETJIaBHbIE (B CMBICJIE XapTMaHa) pemieHnd U BhIIUCIAI0TCA YUCIa HexapI/I.

VIIK 517.51 + 517.91

A. Gricans, F. Sadirbajevs. Formulas Emdena — Faulera tipa nelinearo
diferencialvienadojumu atrisinajumiem.
Anotacija. Tiek apskatiti nelinearie diferencialvienadojumi forma

d

— 2e r_ %
T q(t)|z|*x, e

e>0, ¢geC(R,(0,+00)),

kur ¢(t) — specialas t-atkarigas funkcijas, kuram eksisté atrisinajumu formulas. Tiek
pétitas atrisinajumu ipasibas, tiek konstruéti t. s. principialie un neprincipialie atrisinajumi.
Izskaitloti Nehari skaitli, kuri dod atrisinajumu variacijas raksturojumu.
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