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Types of solutions of the second order

Neumann problem: multiple solutions

I. Yermachenko and F. Sadyrbaev

Summary. The Neumann boundary value problem x′′ = f(t, x, x′) (i), x′(0) =
0 = x′(1) (ii) is studied. Suppose that an equation (L2x)(t) := d

dt
(p(t) x′) + q(t) x =

F (t, x, x′) (iii), where F is bounded, is equivalent to (i) in some (t, x, x′)-domain D and
solutions of the quasi-linear problem (iii), (ii) satisfy the estimate (t, x(t), x′(t)) ∈ D ∀t ∈
[0, 1]. We say then that the original problem (i), (ii) allows for L2-quasilinearization in D.
In this case it is solvable. We show that if the original problem allows for quasilinearization
with respect to essentially different linear parts (L2x)(t), then it has multiple solutions.
Illustrative examples are analyzed.

1991 MSC 34B15

1 Introduction

We consider the second order equation

x′′ = f(t, x, x′) (1)

together with the Neumann boundary conditions

x′(0) = 0, x′(1) = 0, (2)

provided that f is continuous along with the partial derivatives fx and fx′ .
Let us recall the general scheme employed usually to study the two-point second order

boundary value problems. In the case of, say, the Dirichlet boundary conditions

x(0) = 0, x(1) = 0 (3)
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the problem (1), (3) can be reduced under certain conditions to that for an equation

x′′ = F (t, x, x′), (4)

where F is bounded and coincides with f in some (t, x, x′)-domain D. The solvability of
(4), (3) follows from the well-known results ([1], [2]). If a solution x(t) of the modified
problem (4), (3) is such that (t, x(t), x′(t)) ∈ D ∀t ∈ [0, 1], then x(t) solves also the original
problem (1), (3). Of course, the system (1), (3) must satisfy certain conditions, usually the
upper and lower functions condition and the Nagumo type condition. The homogeneous
linear problem (that is, x′′ = 0, x(0) = x(1) = 0 in the case of the Dirichlet problem) is
required to have the trivial solution only.

In the case of the Neumann boundary conditions reduction to equation (4) is not
appropriate since the homogeneous problem

x′′ = 0, x′(0) = x′(1) = 0

has a nontrivial solution. One may overcome this difficulty by trying to reduce the original
problem to the quasi-linear one of the form

x′′ + x = F (t, x, x′), x′(0) = x′(1) = 0.

Notice that the homogeneous problem x′′+x = 0, x′(0) = x′(1) = 0 has only the trivial
solution.

Our intent in this paper is to study the Neumann boundary value problem by reducing
equation (1) to the quasi-linear one of the form

d

dt
(p(t) x′) + q(t) x = F (t, x, x′), (5)

where the right side F is bounded. We investigate the effect the linear part bears on
solutions. It appears that if the original equation can be written in the form (5) for
several essentially different linear left sides and certain estimates can be obtained for
respective quasi-linear problems, then the problem (1), (2) has multiple solutions. We
mean that the linear parts in representations (5) have different oscillatory types.

Let us mention several papers on the relevant subject, namely, [7], [8], [9], [11]. It was
shown in [7], for example, that under certain conditions the BVP (1), (2) has a solution
ξ(t) such that the linear equation of variations with respect to ξ(t) is disconjugate in [0, 1].
Recall that the linear second order equation is called disconjugate in some open interval,
if the only solution with more than one zero in this interval, is the trivial one.

One may consult also [9], [12] – [14].

2 Quasi-linear boundary value problems

Consider the problem (5), (2), where p (t) > 0, p, q ∈ C(I), I := [0, 1], F, Fx, Fx′ ∈
C(I × R2,R).

The result below is well known (([1], [2]).
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Theorem 2.1 Suppose that the problem

(L2x)(t) :=
d

dt
(p(t)x′) + q(t)x = 0, (6)

(2) has only the trivial solution and F (t, x, x′) in (5) is bounded.
Then the problem (5), (2) has a solution.

Lemma 2.1 The Green’s function for the problem (6), (2) is given by

G(t, s) =
1

W





u(t)v(s)

p(s)
, 0 ≤ t < s ≤ 1,

u(s)v(t)

p(s)
, 0 ≤ s < t ≤ 1,

(7)

where u(t) and v(t) are linearly independent solutions of (L2x)(t) = 0, which satisfy the
initial conditions x′(0) = 0 and x′(1) = 0 respectively, W (s) = u(s)v′(s)− v(s)u′(s).

Proof. Follows from [5, Ch. 3, § 27].

Lemma 2.2 A set S of all solutions of the BVP (5), (2) is non-empty and compact in
C1(I × R2,R).

Proof. The first assertion follows from Theorem 2.1.
Rewrite the problem (5), (2) in the integral form

x(t) =

1∫

0

G(t, s) F (s, x(s), x′(s)) ds. (8)

Respectively

x′(t) =

1∫

0

∂

∂t
G(t, s) F (s, x(s), x′(s)) ds. (9)

If |F (t, x, x′)| ≤ M, ∀(t, x, x′) ∈ I × R2, then

|x(t)| ≤ Γ ·M, |x′(t)| ≤ Γ1 ·M, ∀t ∈ I,

where Γ and Γ1 are bounds for |G(t, s)| and | ∂
∂t

G(t, s)| respectively. Then the set S is
bounded in C1-norm.

Let us show that the set S satisfies the equicontinuity condition. First consider the
difference x(t2)− x(t1). One has, by virtue of (7), that

W · x(t2) = v(t2)

∫ t2

0

u(s)

p(s)
F (s) ds + u(t2)

∫ 1

t2

v(s)

p(s)
F (s) ds (10)

and

W · x(t1) = v(t1)

∫ t1

0

u(s)

p(s)
F (s) ds + u(t1)

∫ 1

t1

v(s)

p(s)
F (s) ds, (11)
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where F (s) stands for F (s, x(s), x′(s)).
It follows from (10) and (11) that

|W | · |x(t2)− x(t1)| ≤
∣∣∣∣v(t2)

∫ t2

0

u(s)

p(s)
F (s) ds− v(t1)

∫ t1

0

u(s)

p(s)
F (s) ds

∣∣∣∣

+

∣∣∣∣u(t2)

∫ 1

t2

v(s)

p(s)
F (s) ds− u(t1)

∫ 1

t1

v(s)

p(s)
F (s) ds

∣∣∣∣ .

Let us estimate each addend. It follows for the first one that
∣∣∣∣v(t2)

∫ t2

0

u(s)

p(s)
F (s) ds− v(t1)

∫ t1

0

u(s)

p(s)
F (s) ds

∣∣∣∣

=

∣∣∣∣v(t2)

∫ t2

0

u(s)

p(s)
F (s) ds− v(t1)

∫ t2

0

u(s)

p(s)
F (s) ds

+ v(t1)

∫ t2

0

u(s)

p(s)
F (s) ds− v(t1)

∫ t1

0

u(s)

p(s)
F (s) ds

∣∣∣∣

≤ |v(t2)− v(t1)|
∣∣∣∣
∫ t2

0

u(s)

p(s)
F (s) ds

∣∣∣∣ + |v(t1)|
∣∣∣∣
∫ t2

t1

u(s)

p(s)
F (s) ds

∣∣∣∣

≤ M

p0

∫ 1

0

|u(s)| ds · v′∗ · |t2 − t1|+ v∗ · M

p0

· u∗ · |t2 − t1|

≤ M

p0

· u∗(v′∗ + v∗) · |t2 − t1|,

where p0 = min p(t), u∗ = max |u(t)|, v∗ = max |v(t)|, v′∗ = max |v′(t)|, t ∈ I.
The second addend can be estimated similarly.
One can show in analogous way that the set of functions x′(t) is also equicontinuous,

if x ∈ S.
Hence the proof. ¥

Lemma 2.3 There exists an element x∗ ∈ S with the property that x∗(0) = max{x(0) :
x ∈ S}. Similarly there exists an element x∗ ∈ S with the property that x∗(0) = min{x(0) :
x ∈ S}.

Proof. First let us prove that the set S0 := {x(0) : x ∈ S} is compact in R. We
will show that the set above is bounded and closed. Boundedness follows from Lemma
2.2. Let us show that this set is closed. Suppose that xn(0) → r, where xn ∈ S. Then, by
compactness of the set S, one may find a subsequence xnk

which tends to some x ∈ S as
nk → +∞. Obviously x(0) = r. Thus r ∈ S0.

Since one-dimensional closed sets have the minimal and the maximal elements, the
proof follows. ¥
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Lemma 2.4 All solutions of (5) are extendable to the interval [0, 1] and uniquely defined
by the initial data.

Proof. The first assertion follows from boundedness of F. Notice that since the con-
tinuous partial derivatives Fx and Fx′ exist, equation (5) satisfies the Lipschitz condition
in any compact in I×R2 domain. Then solutions of (5) are uniquely defined by the initial
data and continuously depend on the initial data. ¥

Consider the Cauchy problem

(L2x)(t) = 0, x(0) = 1, x′(0) = 0. (12)

Definition 2.1 We say that a linear part (L2x)(t) is i-nonresonant in the interval I
(with respect to the Neumann boundary conditions (2)), if a solution x(t) of the problem
(12) satisfies the conditions:
a) zeros of x(t) and zeros of x′(t) alternate in the interval [0, 1);
b) there exist exactly i points tj ∈ (0, 1) such that x′(tj) = 0 and x′(1) 6= 0.

Denote by x(t; α) a solution of the Cauchy problem (1) (or (5)),

x(0) = α, x′(0) = 0. (13)

Consider equation (5) with the initial conditions (13).

Lemma 2.5 Suppose that (L2x)(t) is i-nonresonant in the interval I. Let ξ(t) be any
element of S.

Then for α → ±∞ the difference u(t; α) = x(t; α)−ξ(t) has exactly i points tj ∈ (0, 1)
such that u′(tj; α) = 0 and u′(1; α) 6= 0.

Proof. Consider the difference u(t; α) = x(t; α)− ξ(t). One has that

(L2u)(t) = F (t, x, x′)− F (t, ξ, ξ′), u′(0) = 0, u(0) = α− ξ(0).

Introduce new variable v by v :=
u

α− ξ(0)
. Then v(t; α) satisfies

(L2v)(t) =
F (t, x, x′)− F (t, ξ, ξ′)

α− ξ(0)
, (14)

v(0) = 1, v′(0) = 0.

Since F is bounded the right side in (14) tends to zero as α → ±∞ uniformly in t ∈ I.
Then by continuous dependence on the right side v(t; α) tends to a solution of the initial
value problem (12). ¥

Lemma 2.6 Let ξ(t) be any element of S.
Zeros of the difference u(t; α) = x(t; α) − ξ(t), α 6= ξ(0), continuously depend on α

in intervals of existence.

Proof. Follows from continuous dependence of solutions of (5) on initial data and
from the fact that u(t; α) cannot have double zeros. Indeed, if this were the case, then
x(t; α) = ξ(t) and x′(t; α) = ξ′(t) at some point t ∈ I. Then x ≡ ξ, by the uniqueness of
solutions of the Cauchy problem for (5). ¥
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3 Main results

Consider the problem (1), (2).

Definition 3.1 Let equations (1) and (5), where the linear part in (5) is i-nonresonant
in the interval I, be equivalent in a domain

Ω = {(t, x, x′) : 0 ≤ t ≤ 1, |x| < N, |x′| < N1}. (15)

Suppose that any solution x(t) of the quasi-linear problem (5), (2) satisfies the estimate

|x(t)| < N, |x′(t)| < N1 ∀t ∈ I. (16)

We will say then that the problem (1), (2) allows for i-quasilinearization with respect to
a domain Ω.

Remark 3.1. Examples of nonlinear problems which allow for quasilinearization will be
given in the next section.

Theorem 3.1 If the problem (1), (2) allows for i-quasilinearization with respect to some
domain Ω, then it has a solution.

Proof. Let x(t) be a solution of the quasi-linear problem (5), (2). If x(t) satisfies
the estimate (16) and equations (1) and (5) are equivalent in Ω, then x(t) solves also the
problem (1), (2).

Theorem 3.2 Suppose that the problem (1), (2) allows for i-quasilinearization with re-
spect to a domain ΩN and, at the same time, it allows for j-quasilinearization with respect
to a domain ΩM . It is assumed that i 6= j.

Then the problem (1), (2) has at least 2 solutions.

Proof. Let (L2x)(t) and (l2x)(t) be respectively i-nonresonant and j-nonresonant
linear parts. Equation (1) can be represented as

(L2x)(t) = Φ(t, x, x′) (17)

and
(l2x)(t) = Ψ(t, x, x′). (18)

Denote by ξ(t) a solution x∗ of the problem (17), (2). This solution exists by Lemma
2.3. Denote by η(t) a solution x∗ of the problem (18), (2). The solution ξ(t) satisfies
the estimate (16) and equation (17) is equivalent to equation (1) in the domain ΩN . The
solution η(t) satisfies the estimate

|η(t)| < M, |η′(t)| < M1 ∀t ∈ I. (19)

and equation (18) is equivalent to equation (1) in the respective domain ΩM .
Consider ξ(t) and the difference u(t; α) = y(t; α)− ξ(t), where y(t; α) is a solution of

(17), which satisfies the initial conditions

y(0) = ξ(0) + α, y′(0) = ξ′(0) = 0. (20)
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By Lemma 2.5 the function u(t;α)
α−ξ(0)

tends to a solution of the problem (12) as α → +∞.

Then u′(t; α) for α ∼ +∞ vanishes exactly at i points of the interval (0, 1) and u′(1; α) 6= 0.
Notice that the function of α u′(1; α) does not vanish for α ∈ (0, +∞). If u′(1; α1) = 0
for some α1 ∈ (0, +∞) then the respective y(t; α1) solves the problem (17), (2) and this
contradicts the choice of ξ(t) as a solution of (17), (2), which has the maximal derivative
at the point t = 0. It follows from the arguments above that u′(1; α) is positive for α ∼ 0,
if i is odd, and u′(1; α) is negative for α ∼ 0, if i is even.

Behavior of the difference v(t; α) = z(t; α) − η(t), where z(t; α) is a solution of (18),
which satisfies the initial conditions

z(0) = η(0) + α, z′(0) = η′(0) = 0 (21)

can be analyzed in a similar way. The function v′(1; α) is also positive for α ∼ 0, if i is
odd, and it is negative for α ∼ 0, if i is even.

Consider the case of i being even and j being odd. Suppose ξ = η =: w. By continuous
dependendence of solutions of equations (17) and (18) on initial data, functions x(t; α)
(and y(t; α) = x(t; α)) for α small enough satisfy both the estimates (16) and (19). Then
x(t; α) are solutions of equation (1) too. One has then that u(t; α) ≡ v(t; α) for small α.
On the other hand, since i is even, u′(1; α) < 0, and, since j is odd, v′(1; α) > 0 for small
α. The contradiction proves that ξ and η are different solutions of (1), (2).

Suppose now that both i and j are even different positive integers. To be definite,
consider the case i = 2, j = 4. Let u and v have the same meaning as above. Consider
the function u(t; α). The number of zeros of u(t; α) in the interval I for α ∼ +∞ is either
2, or 3. The number of zeros is not greater than 3 for any α ∈ (0, +∞). Indeed, if u(t; α)
has 4-th zero in I for some α = α2 then u′(1; α) vanishes for some α3 > α2. This is not
possible since x(t; α3) is then a solution of the problem (17), (2) and x′(0; α3) > ξ′(0).
Then the maximal number of zeros of the function u(t; α) is 3.

Consider the functions v(t; α). The number of zeros of v(t; α) in the interval I for
α ∼ +∞ is either 4, or 5. Let us show that the number of zeros of v(t; α) in the interval
I is not less than 4 for any α ∈ (0, +∞). Indeed, if v(t; α) has the 3-rd zero in I for some
α = α4 then v′(1; α) vanishes for some α5 > α4. This is not possible since y(t; α5) is then
a solution of the problem (18), (2) and x′(0; α5) > ξ′(0). Then the minimal number of
zeros of the function v(t; α) is 4.

Suppose that ξ = η =: w. By the arguments above u(t; α) ≡ v(t; α) for small α > 0.
On the other hand, u(t; α) has at most three zeros in I and v(t; α) has at least four zeros
in I for small α. The contradiction proves that ξ and η are different solutions of (1), (2).

Other cases can be treated similarly. ¥

Corollary 3.1 Suppose that the problem (1), (2) allows for ij-quasilinearizations with
respect to domains ΩNj

, j = 1, . . . , n, where ij 6= ik, if j 6= k.
Then the problem (1), (2) has at least n solutions.

Proof. It follows from Theorem 3.1 that for any j ∈ {1, . . . , n} the problem (1), (2)
has a solution xj, associated with the respective ij-nonresonant linear part. By Theorem
3.2 all such solutions are different. ¥
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4 Examples and applications

In this section we show that the quasilinearization scheme works for certain classes of
equations.

Example 1. Consider the boundary value problem

x′′ = −λ2 · |x|p sign x, x′(0) = x′(1) = 0, (22)

where p > 0, p 6= 1.
The equivalent problem is

x′′ + k2x = k2x− λ2 · |x|p sign x, x′(0) = x′(1) = 0, (23)

where k satisfies
iπ < k < (i + 1)π (24)

for some i (i = 0, 1, . . .). This condition means that the linear part x′′ + k2x is i-
nonresonant in I. The respective homogeneous problem

x′′ + k2x = 0, x′(0) = x′(1) = 0, (25)

has then only the trivial solution.

The Green’s function of the problem (25) is given by

Gk(t, s) =





cos k(s− 1) · cos kt

k sin k
, 0 ≤ t ≤ s ≤ 1,

cos k(t− 1) · cos ks

k sin k
, 0 ≤ s ≤ t ≤ 1

(26)

and satisfies the estimate

|Gk(t, s)| ≤ Γk =
1

k · | sin k| . (27)

Consider the function fk(x) := k2x−λ2 · |x|p sign x. Since it is odd, we can treat it for
positive values of x only. There exists a point of local extremum x0. Calculation shows
that

x0 =
( k2

λ2p

) 1
p−1

.

In the case of p > 1 x0 is a point of maximum and in the case of 0 < p < 1 x0 is the
minimum point. Set

Mk = |fk(t, x0)| =
(k2

p

) p
p−1 · |p− 1| · λ 2

1−p . (28)

The function |fk(x)| vanishes at x1 = ( k2

λ2 )
1

p−1 and unboundedly increases for x > x1.
There exists x2 ∈ (x1, +∞) such that fk(x2) = −fk(x0). Set Nk = x2. The number Nk

can be represented as

Nk =
(k2

λ2

) 1
p−1

β, (29)



13

where β satisfies the equation

βp = β + (p− 1) · p p
1−p . (30)

The equation (30) has a root β > 1 for any positive p (p 6= 1).

One can consider the quasi-linear problem

x′′ + k2x = Fk(x), x′(0) = x′(1) = 0, (31)

instead of (23), where
Fk(x) := ϕ(x) · fk(x))

and ϕ(x) is a bounded smooth function such that ϕ(x) = 1 for |x| ≤ Nk, ϕ(x) = 0 for
|x| ≥ Nk + ε and max{|Fk| : x ∈ R} = Mk. A number ε can be chosen arbitrarily small.

If the inequality
Γk ·Mk < Nk (32)

holds, then the original problem has a solution similar to the linear part x′′ + k2x.
If analogous quasilinearization is possible for kj such that

ijπ < kj < (ij + 1)π, j = 1, ..., m

and the inequalities
Γkj

·Mkj
< Nkj

, (33)

hold, then the problem (31) has at least m solutions x1, ...xm. Any solution xj is similar
to the linear part x′′ + k2

j x.
It follows from (27), (28), (29) that the inequality (32) takes the form

1

k · | sin k| ·
(k2

p

) p
p−1 · |p− 1| · λ 2

1−p ≤
(k2

λ2

) 1
p−1

β,

k

| sin k| < β · p
p

p−1

|p− 1| . (34)

Notice that the inequality (34) is independent of λ.

To simplify calculations, let | sin k| = 1 (that is, k =
π

2
+ πn , n = 0, 1, 2, . . .). Then the

latter inequality reduces to

k < β · p
p

p−1

|p− 1| . (35)

Proposition 4.1 The linear part (L2x)(t) := x′′ + k2x is i-nonresonant in the interval I

for any k =
π

2
+ πi, i = 0, 1, 2, . . . .

Proof. By simple calculations.
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Consider Ω = {(t, x) : 0 ≤ t ≤ 1, |x| < Nk, |x′| < +∞}. Let us examine for
which values of k this problem allows for Ω-quasilinearization. Then the problem under
consideration is solvable.

Computations show that for p ∈ [0.5, 1) ∪ (1, 2] there exist at least two values of k

k0 =
π

2
, k1 =

3π

2
,

which satisfy (35). Then at least two solutions of the problem (22) exist.

Since β > 1 and lim
p→1

p
p

p−1

|p− 1| = +∞ the right side of the inequality (35) tends to ∞

as p → 1. Then the inequality (35) holds for arbitrarily large values of k =
π

2
+ πn ,

n = 0, 1, 2, . . ..
If

1) p =
1

2
or p = 2 then the appropriate values of k (those which satisfy the inequality

(35) are

k0 =
π

2
, k1 =

3π

2
;

2) p =
2

3
or p =

3

2
then the appropriate values of k are

k0 =
π

2
, k1 =

3π

2
, k2 =

5π

2
;

3) p =
3

4
or p =

4

3
then the appropriate values of k are

k0 =
π

2
, k1 =

3π

2
, k2 =

5π

2
, k3 =

5π

2

and so on.

Proposition 4.2 For any p ∈ [0.5, 2], p 6= 1, there exist at least two values of k of the

form k =
π

2
+ πn, n = 0, 1, 2, . . . , which satisfy the inequality (35).

Therefore there exist at least two (different) solutions of the problem (22), which satisfy
the estimates |xk(t)| ≤ Nk.

Let us illustrate the proposition above by considering the specific case of p =
3

2
.

The problem
x′′ = −|x| 32 sign (x), x′(0) = x′(1) = 0 (36)

can be reduced to

(x′)2 +
4

5
|x| 52 = C,

where

C = const =
4

5

∣∣x(0)
∣∣ 5

2 =
4

5

∣∣x(1)
∣∣ 5

2 =
4

5

∣∣xeks

∣∣ 5
2 .
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It follows from the equality above that solutions of the problem (22) possess the followinf
properties: ∣∣x(0)

∣∣ =
∣∣x(1)

∣∣ =
∣∣xeks

∣∣,

where xeks stand for an extremum of x(t),
∣∣xeks

∣∣ =
25

16

J4

τ 4
, where

J =

1∫

0

ds√
1− s

5
2

≈ 1.472,

τ is the length of the interval, where the function x(t) varies from zero to an extremum.
The respective quasilinear problem, as was mentioned above, is solvable for three different
values of k. Respectively (29) Nk = β k4, where β ≈ 1.250. Denote by ξk(t) solutions of
the problem (36)

One has k0 =
π

2
ξ0 ≡ 0.

For k1 =
3π

2
ξ1(t) the monotone in [0, 1] function, which attends its extremum at the

points t = 0, t = 1, the respective τ =
1

2
. Then

max
[0,1]

∣∣ξ1(t)
∣∣ ≈ 117.374 < N 3π

2
= β

(3π

2

)4

≈ 616.415.

For k2 =
5π

2
the function ξ2(t) has exactly one extremum in (0, 1), the respective τ =

1

4
.

Then

max
[0,1]

∣∣ξ2(t)
∣∣ ≈ 1877.981 < N 5π

2
= β

(5π

2

)4

≈ 4756.305.¥

Proposition 4.3 For any positive integer m there exists ε > 0 such that if p 6= 1 satisfies
the inequalities

1− ε < p < 1 + ε,

then k =
π

2
(2n− 1), n = 1, 2, . . . , m satisfy the inequality (35). Therefore there exist at

least m (different) solutions of the problem (22).

Proof. Follows from (35).

Example 2. Consider the boundary value problem

x′′ = −2mx′ − λ2 · |x|p sign (x), (37)

x′(0) = x′(1) = 0, (38)

where m 6= 0, p > 0, p 6= 1.
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Equation (37) can be reduced to

d

dt

(
e2mt x′

)
+ e2mt k2x = e2mt

(
k2x− λ2 · |x|p sign (x)

)
. (39)

Denote k2x− α2 |x|p sign (x) = fk(x), then

d

dt

(
e2mt x′

)
+ e2mt k2x = e2mt fk(x). (40)

Suppose that k2 > m2. Denote also
√

k2 −m2 =: r.
The problem (40), (38) is equivalent to (37), (38). The respective homogeneous equation

d

dt

(
e2mt x′

)
+ e2mt k2x = 0 (41)

subject to prescribed boundary conditions (38) has only the trivial solution if the condition

W0 := k2 sin rm,k 6= 0 (42)

holds. The Green’s function Gm,k(t, s) for the boundary value problem (41),(38) exists in
the form

Gm,k(t, s) =





e−m(t+s) · v(s) · u(t)

W
, 0 ≤ t ≤ s ≤ 1,

e−m(t+s) · u(s) · v(t)

W
, 0 ≤ s ≤ t ≤ 1,

(43)

where
W = r ·W0,

and the functions u(t) and v(t) are such that

u1(t) = e−mtu(t)

is a solution of (41) and satisfies the condition

u′1(0) = 0,

respectively
v1(t) = e−m(t+1)v(t)

is a solution of (41) and satisfies the condition

v′1(1) = 0.

Functions u(t) and v(t) can be written in the form

u(t) = |k| · sin (
rt + ϕ

)
, (44)

v(t) = |k| · sin (
r(t− 1) + ϕ

)
, (45)
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where
ϕ = arcsin

r

|k| .

Evidently u(t) and v(t) can be estimated as

∣∣u(t)
∣∣ ≤ |k|,

∣∣v(t)
∣∣ ≤ |k|. (46)

The problem (40), (38) can be rewritten in integral form, that is,

x(t) =

1∫

0

Gm,k(t, s)e
2msfk(x(s)) ds, (47)

Let us consider modified quasilinear equation

d

dt

(
e2mt x′

)
+ e2mt k2x = e2mt Fk(x), (48)

where Fk is defined as in Example 1. The equivalent integral form is

x(t) =

1∫

0

Gm,k(t, s)e
2msFk(x(s)) ds. (49)

If Fk(x) satisfies the estimate

max
|x|≤Nk

∣∣∣Fk(x)
∣∣∣ ≤ Mk,

then ∣∣x(t)
∣∣ ≤ k2e|m|Mk

|W | =
e|m|Mk

r · | sin r| . (50)

Proposition 4.4 If for some m, k (k2 > m2, k2r 6= 0) there exists Nk such that

∀x
∣∣x(t)

∣∣ < Nk ⇒ max
t∈[0,1]

∣∣∣Fk(x)
∣∣∣ ≤ Mk

and the inequality
e|m|Mk

r · | sin r| < Nk, (51)

holds, then for m, k given a solution xm,k to the problem (40), (38) exists which satisfies
the estimate ∣∣xm,k(t)

∣∣ < Nk

Values of Mk and Nk can be found as in Example 1. We can set r =
π

2
+πn, n = 0, 1, 2, . . ..

Then the inequality (51) takes the form

k2e|m|

r
< β · p

p
p−1

|p− 1| ,
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(r2 + m2)e|m|

r
< β · p

p
p−1

|p− 1| , (52)

where r =
π

2
+ πn , n = 0, 1, 2, . . ..

In the table given in Appendix the results of calculations are provided. It is shown for
certain values of p and m, which r(r0, r1, ...) (and hence k) are good for the inequality
(52) to be satisfied.

Proposition 4.5 For given m there exists ε > 0 such that if p 6= 1 satisfies the inequali-
ties

1− ε < p < 1 + ε,

then r =
π

2
+ πn , n = 0, 1, . . . q satisfy the inequality (52). Therefore there exist at least

q (different) solutions of the problem (39), (38).

Proposition 4.6 A linear part (L2x)(t) := d
dt

(
e2mt x′

)
+ e2mt k2x

for m, k satisfy
√

k2 −m2 =
π

2
+ πn, n = 0, 1, 2, . . . is n-nonresonant in the interval I.

Proof. A solution of the problem

(L2x)(t) = 0, x(0) = 1, x′(0) = 0, x′(1) 6= 0

is given by

x(t) = e−mt
(
cos rt +

m

r
sin rt

)
,

where r =
√

k2 −m2. Since

x′ = −e−mt k
2

r
sin rt,

then x′(tj) = 0, if

tj =
π lj
r

, lj ∈ N.

Keeping in mind that r (r =
π

2
+ πn, n = 0, 1, 2, . . .), one gets that there exist exactly n

points tj ∈ (0, 1) such that x′(tj) = 0. ¥

Proposition 4.7 Let Ω = {0 ≤ t ≤ 1, |x| < Nk, |x′| < +∞}, where Nk =
(k2

λ2

) 1
p−1

β

and β satisfies the equation (30). Then if m, k in (39) are such that the inequality

k2e|m|√
k2 −m2

< β · p
p

p−1

|p− 1|
holds, the problem (37), (38) allows for k-quasilinearization with respect to ΩNk

and there-
fore has a solution, which satisfies the estimate |x| ≤ Nk.
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5 Appendix

|m| = 3
2

|m| = 1 |m| = 1
2

|m| = 1
3

p =
2
3

−−−−− r0 =
π

2
r0 =

π

2
; r1 =

3π

2
r0 =

π

2
; r1 =

3π

2

p =
3
4

−−−−− r0 =
π

2
r0; r1; r2 =

5π

2
r0; r1; r2 =

5π

2

p =
4
5

r0 =
π

2
r0 =

π

2
; r1 =

3π

2
r0; r1; r2 =

5π

2
r0; . . . ; r3 =

7π

2

p =
5
6

r0 =
π

2
r0 =

π

2
; r1 =

3π

2
r0; . . . ; r3 =

7π

2
r0; . . . ; r4 =

9π

2

p =
6
7

r0 =
π

2
; r1 =

3π

2
r0; r1; r2 =

5π

2
r0; . . . ; r4 =

9π

2
r0; . . . ; r4 =

9π

2

p =
7
8

r0 =
π

2
; r1 =

3π

2
r0; r1; r2 =

5π

2
r0; . . . ; r4 =

9π

2
r0; . . . ; r5 =

11π

2

p =
8
9

r0 =
π

2
; r1 =

3π

2
r0; . . . ; r3 =

7π

2
r0; . . . ; r5 =

11π

2
r0; . . . ; r6 =

13π

2

p =
9
10

r0 =
π

2
; r1 =

3π

2
r0; . . . ; r3 =

7π

2
r0; . . . ; r6 =

13π

2
r0; . . . ; r7 =

15π

2

p =
10
11

r0; r1; r2 =
5π

2
r0; . . . ; r3 =

7π

2
r0; . . . ; r6 =

13π

2
r0; . . . ; r8 =

17π

2

p =
11
12

r0; r1; r2 =
5π

2
r0; . . . ; r4 =

9π

2
r0; . . . ; r7 =

15π

2
r0; . . . ; r9 =

19π

2

p =
12
13

r0; r1; r2 =
5π

2
r0; . . . ; r4 =

9π

2
r0; . . . ; r8 =

17π

2
r0; . . . ; r9 =

19π

2
. . . . . . . . . . . . . . .

p =
13
12

r0; r1; r2 =
5π

2
r0; . . . ; r4 =

9π

2
r0; . . . ; r8 =

17π

2
r0; . . . ; r9 =

19π

2

p =
12
11

r0; r1; r2 =
5π

2
r0; . . . ; r4 =

9π

2
r0; . . . ; r7 =

15π

2
r0; . . . ; r8 =

17π

2

p =
11
10

r0; r1; r2 =
5π

2
r0; . . . ; r3 =

7π

2
r0; . . . ; r6 =

13π

2
r0; . . . ; r7 =

15π

2

p =
10
9

r0 =
π

2
; r1 =

3π

2
r0; . . . ; r3 =

7π

2
r0; . . . ; r5 =

11π

2
r0; . . . ; r7 =

15π

2

p =
9
8

r0 =
π

2
; r1 =

3π

2
r0; r1; r2 =

5π

2
r0; . . . ; r5 =

11π

2
r0; . . . ; r6 =

13π

2

p =
8
7

r0 =
π

2
; r1 =

3π

2
r0; r1; r2 =

5π

2
r0; . . . ; r4 =

9π

2
r0; . . . ; r5 =

11π

2

p =
7
6

r0 =
π

2
r0; r1; r2 =

5π

2
r0; . . . ; r3 =

7π

2
r0; . . . ; r4 =

9π

2

p =
6
5

r0 =
π

2
r0 =

π

2
; r1 =

3π

2
r0; . . . ; r3 =

7π

2
r0; . . . ; r3 =

7π

2

p =
5
4

r0 =
π

2
r0 =

π

2
; r1 =

3π

2
r0; r1; r2 =

5π

2
r0; . . . ; r3 =

7π

2

p =
4
3

−−−−− r0 =
π

2
r0; r1 =

3π

2
r0; r1; r2 =

5π

2

p =
3
2

−−−−− r0 =
π

2
r0 =

π

2
; r1 =

3π

2
r0 =

π

2
; r1 =

3π

2
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