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The Nehari characteristic numbers 𝜆
𝑛
(𝑎, 𝑏) are the minimal values of an integral functional associated with a boundary value

problem (BVP) for nonlinear ordinary differential equation. In case of multiple solutions of the BVP, the problem of identifying
of minimizers arises. It was observed earlier that for nonoscillatory (positive) solutions of BVP those with asymmetric shape can
provide the minimal value to a functional. At the same time, an even solution with regular shape is not a minimizer. We show by
constructing the example that the same phenomenon can be observed in the Nehari problem for the fifth characteristic number
𝜆
𝑛
(𝑎, 𝑏) which is associated with oscillatory solutions of BVP (namely, with those having exactly four zeros in (𝑎, 𝑏)).

1. Introduction

The variational theory of eigenvalues in Sturm-Liouville pro-
blems for linear ordinary differential equations provides vari-
ational interpretation of eigenvalueswhich emerge asminima
of some quadratic functionals being considered with certain
restrictions [1].

As to nonlinear boundary value problems for ordinary
differential equations, the Nehari theory of characteristic
values provides some analogue of the linear theory. The
Nehari theory deals in particular with superlinear differential
equations of the form

𝑥
󸀠󸀠

= −𝑞 (𝑡) |𝑥|
2𝜀

𝑥, 𝜀 > 0. (1)

The Nehari numbers 𝜆
𝑛
(𝑎, 𝑏), by definition, are minimal val-

ues of the functional

𝐻(𝑥) = ∫

𝑏

𝑎

[𝑥
󸀠2

(𝑡) − (1 + 𝜀)
−1

𝑞 (𝑡) 𝑥
2+2𝜀

(𝑡)] 𝑑𝑡 (2)

over the set Γ
𝑛
of all functions 𝑥(𝑡), which are (1) continuous

and piecewise continuously differentiable in [𝑎, 𝑏]; (2) there
exist numbers 𝑎] such that 𝑎 = 𝑎

1
< ⋅ ⋅ ⋅ < 𝑎

𝑛−1
= 𝑏 and

𝑥(𝑎]) = 0 in any 𝑎]; (3) in any [𝑎]−1, 𝑎]], 𝑥(𝑡) ̸≡ 0 and

∫

𝑎]

𝑎]−1

𝑥
󸀠2

(𝑡) 𝑑𝑡 = ∫

𝑎]

𝑎]−1

𝑞 (𝑡) 𝑥
2

|𝑥|
2𝜀

𝑑𝑡. (3)

It was proved in [2] (see also [3]) thatminimizers in the above
variational problem are 𝐶2-solutions of the boundary value
problem

𝑥
󸀠󸀠

= −𝑞 (𝑡) |𝑥|
2𝜀

𝑥, 𝑥 (𝑎) = 𝑥 (𝑏) = 0,

𝑥 (𝑡) has exactly 𝑛 − 1 zeros in (𝑎, 𝑏) .
(4)

Putting (3) into (2) one gets

𝜆
𝑛
(𝑎, 𝑏) = min

𝑥∈Γ
𝑛

𝐻(𝑥)

=
𝜀

1 + 𝜀
∫

𝑏

𝑎

𝑞 (𝑡) 𝑥
2+2𝜀

(𝑡) 𝑑𝑡

=
𝜀

1 + 𝜀
∫

𝑏

𝑎

𝑥
󸀠2

(𝑡) 𝑑𝑡,

(5)

where 𝑥(𝑡) is an appropriate solution of the BVP (4).The BVP
(4) may have multiple solutions but not all of them are mini-
mizers.

It appears that in order to detect 𝜆
𝑛
(𝑎, 𝑏) it is sufficient to

consider solutions of the boundary value problem (4).
Z. Nehari posed the question is it true that there is only

one minimizer associated with 𝜆
𝑛
(𝑎, 𝑏). It was shown implic-

itly in [4] that there may be multiple minimizers associated
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Figure 1: Three solutions of the BVP from [5].

with the first characteristic number 𝜆
1
(𝑎, 𝑏). These minimiz-

ers are positive solutions of the problem (4) (𝑛 = 1).
Later in the work by the authors [5] the example was

constructed showing three solutions of the BVP (4).They are
depicted in Figure 1.

Two of these solutions are asymmetric and one is an
even function. Surprisingly, two asymmetric solutions are the
minimizers.

The same phenomenonwas observed later by Kajikiya [6]
who studied “the Emden-Fowler equation whose coefficient
is even in the interval (−1, 1) under the Dirichlet boundary
condition.” It was proved that if the density of the coefficient
function is thin in the interior of (−1, 1) and thick on the
boundary, then a least energy solution is not even.Therefore,
the equation has at least three positive solutions: the first one
is even, the second one is a non-even least energy solution
𝑢(𝑡), and the third one is the reflection 𝑢(−𝑡). Similar
phenomena were discussed in [7, 8].

In this note, we confirm this phenomenon for the char-
acteristic value 𝜆

5
. Solutions for this characteristic value have

exactly four zeros in an open interval (𝑎, 𝑏). We construct the
example and provide all the calculations and visualizations.

2. Preliminaries

2.1. Conventions andDefinitions. Theproblemof finding cha-
racteristic values 𝜆

𝑛
(𝑎, 𝑏) is called the Nehari problem. A

function 𝑥(𝑡) that supplies minimal value in the Nehari
problem will be called the Nehari solution. Nehari solutions
associated with the equation, the interval (𝑎, 𝑏), and the
number 𝑛, all are solutions of the respective boundary value
problem (4).

2.2. Auxiliary Functions. In our constructions below we use
the auxiliary functions called the lemniscatic sine sl 𝑡 and
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Figure 2: The function 𝑞(𝑡) in (9) for ℎ = 10 and 𝜂 = 11.

cosine cl 𝑡. These functions can be introduced as solutions of
the Cauchy problems, respectively, as follows:

𝑥 (0) = 0, 𝑥
󸀠

(0) = 1, 𝑥 (0) = 1, 𝑥
󸀠

(0) = 0 (6)

for the equation𝑥󸀠󸀠 = −2𝑥
3.These functions aremuch like the

usual sine and cosine functions, but they are not the deriva-
tives of each other. Instead the following holds:

sl󸀠𝑡 = cl 𝑡 (1 + sl2𝑡) , cl󸀠𝑡 = −sl 𝑡 (1 + cl2𝑡) . (7)

A complete list of formulas for the lemniscatic functions can
be found in [9]. The lemniscatic functions can be handled
symbolically by theWolframMathematica programusing the
representation in terms of the built-in Jacobi functions.

3. Construction of the Equation

Consider the interval [−1, 1]. Define the piecewise linear
function

𝜉 (𝑡) = {
ℎ𝑡 + 𝜂, 𝑡 ∈ [−1, 0] ,

−ℎ𝑡 + 𝜂, 𝑡 ∈ [0, 1] ,
(8)

where 𝜂 = ℎ+ 1 and ℎ > 0 is a selected number. Define 𝑞(𝑡) =
2/𝜉(𝑡)

6. The function 𝑞(𝑡) (depicted in Figure 2) is U-shaped
function “thin” in the middle of the interval [−1, 1].

Consider equation

𝑥
󸀠󸀠

= −𝑞 (𝑡) 𝑥
3

, 𝑡 ∈ (−1, 1) , (9)

together with the boundary conditions

𝑥 (−1) = 0, 𝑥 (1) = 0. (10)

Consider the Cauchy problems

𝑥
󸀠󸀠

1
= −

𝑘

(ℎ𝑡 + 𝜂)
6
𝑥
3

1
,

𝑥
1
(−1) = 0, 𝑥

󸀠

1
(−1) = 𝛽, 𝑡 ∈ (−1, 0) ;

(11)

𝑥
󸀠󸀠

2
= −

𝑘

(−ℎ𝑡 + 𝜂)
6
𝑥
3

2
,

𝑥
2
(1) = 0, 𝑥

󸀠

2
(1) = −𝛾, 𝑡 ∈ (0, 1) .

(12)
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Let

𝑥
1
(𝑡, 𝛽) be a solution of (11) in [−1, 0],

𝑥
2
(𝑡, 𝛾) a solution of (12) in [0, 1].

Then, the function

𝑥 (𝑡) = {
𝑥
1
(𝑡, 𝛽) , if − 1 ≤ 𝑡 ≤ 0,

𝑥
2
(𝑡, 𝛾) , if 0 ≤ 𝑡 ≤ 1

(13)

is a𝐶2-solution of the problem (9) and the problem (10) if the
continuity and smoothness conditions

𝑥
1
(0, 𝛽) = 𝑥

2
(0, 𝛾) , 𝑥

󸀠

1
(0, 𝛽) = 𝑥

󸀠

2
(0, 𝛾) (14)

are satisfied. The problems (11) and (12) can be solved
explicitly as

𝑥
1
(𝑡, 𝛽) = 𝛽

1/2

(ℎ𝑡 + 𝜂) ⋅ sl(𝛽1/2 𝑡 + 1

ℎ𝑡 + 𝜂
) , 𝑡 ∈ [−1, 0] ,

(15)

𝑥
2
(𝑡, 𝛾) = −𝛾

1/2

(−ℎ𝑡 + 𝜂) ⋅ sl(𝛾1/2 𝑡 − 1

−ℎ𝑡 + 𝜂
) , 𝑡 ∈ [0, 1] ,

(16)

where

𝛽 = 𝑥
󸀠

1
(−1) > 0,

−𝛾 = 𝑥
󸀠

2
(1) .

(17)

The derivatives can be computed as

𝑥
󸀠

1
(𝑡; 𝛽) = 𝛽

1/2

ℎ ⋅ sl(𝛽1/2 𝑡 + 1

ℎ𝑡 + 𝜂
)

+ 𝛽
−ℎ + 𝜂

ℎ𝑡 + 𝜂
⋅ sl󸀠 (𝛽1/2 𝑡 + 1

ℎ𝑡 + 𝜂
) .

(18)

In order to get an explicit formula for a solution of the BVP (9)
and (10), one has to solve a system of two equations with
respect to (𝛽, 𝛾):

𝑥
1
(0; 𝛽) = 𝑥

2
(0; 𝛾) , 𝑥

󸀠

1
(0; 𝛽) = 𝑥

󸀠

2
(0; 𝛾) . (19)

This system after replacements and simplifications is

𝛽
1/2

⋅ sl(
𝛽
1/2

𝜂
) = 𝛾

1/2

⋅ sl(
𝛾
1/2

𝜂
) ,

𝛽
1/2

ℎ ⋅ sl(
𝛽
1/2

𝜂
) +

𝛽

𝜂
⋅ sl󸀠 (

𝛽
1/2

𝜂
)

= −𝛾
1/2

ℎ ⋅ sl(
𝛾
1/2

𝜂
) −

𝛾

𝜂
⋅ sl󸀠 (

𝛾
1/2

𝜂
) .

(20)

In new variables 𝑢 := 𝛽
1/2

/𝜂 and V := 𝛾
1/2

/𝜂, the system takes
the form

𝑢 sl 𝑢 = V sl V,

ℎ𝑢 sl 𝑢 + 𝑢
2sl󸀠𝑢 = −ℎV sl V − V2sl󸀠V, ℎ > 0.

(21)
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Figure 3: Zeros ofΦ(𝑢, V) (solid line) andΨ(𝑢, V) (dashed line), ℎ =

10.

Notice that if a solution (𝑢
0
, V
0
) of the system (21) is known,

then a solution𝑥(𝑡)of theBVP (9) and (10) can be constructed
such that

𝑥
󸀠

(−1) = 𝛽 = 𝑢
2

0
𝜂
2

, 𝑥
󸀠

(1) = −𝛾 = −V2
0
𝜂
2

. (22)

If we introduce the functions

Φ (𝑢, V) = 𝑢 sl 𝑢 − V sl V,

Ψ (𝑢, V) = ℎ𝑢 sl 𝑢 + 𝑢
2sl󸀠𝑢 + ℎV sl V + V2sl󸀠V,

(23)

the system (21) can be rewritten as

Φ (𝑢, V) = 0,

Ψ (𝑢, V) = 0.

(24)

Zeros of the functions Φ(𝑢, V) and Ψ(𝑢, V) in the square
𝑄 = {(𝑢, V) : 0 ≤ 𝑢, V ≤ 9} are depicted in Figure 3.Notice that
a set of zeros of Φ consists of the diagonal 𝑢 = V and the
“wings.”

The intersection points of smaller “hat” with the zero set
of Φ(𝑢, V) reflect three solutions of the problem (9) and (10)
depicted in Figure 1. The cross-point on the bisectrix relates
to the even solution, and two symmetric cross-points on the
“wings” relate to the remaining two solutions of asymmetric
shape. The latter two solutions are “unexpected” minimizers
(or, as in [6], “non-even least energy solutions”).

It was proved in [5, Proposition 1] that for ℎ sufficiently
large there are exactly three cross-points on a smaller “hat”
(probably, for any ℎ > 1).The similar proof can be conducted
for themiddle “hat” in Figure 3.There are exactly three cross-
points (and exactly three solutions of the system (24)) that
give rise to solutions of the problem (9) and the problem
(10) that have exactly two zeros in the interval (−1, 1). The
respective values of the Nehari functional 𝐻(𝑥) (5) were
calculated and the result is the same: the even solution
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Figure 4: 𝑥󸀠(−1) = 3666.80.
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Figure 5: 𝑥󸀠(−1) = 6275.29.

supplies𝐻(𝑥even) = 505549, the two solutions of asymmetric
shape supply the value𝐻(𝑥asym) = 332861.

Therefore, we confirm the phenomenon observed in [5, 6]
also for oscillatory (with exactly two zeros in (−1, 1)) solu-
tions.

3.1. Nehari Solutions with Four Internal Zeros. We study in
details the case of theNehari characteristic number 𝜆

5
(−1, 1).

Related solutions of the boundary value problem have exactly
four zeros in the interval (−1, 1). Solving the system (24) on
the third (counting from the origin) “hat” provides us with
values

𝑢
1
= 3666.804, V

1
= 7135.523; 𝑢

2
= V
2
= 6275.287;

𝑢
3
= V
1
, V

3
= 𝑢
1
.

(25)
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Figure 6: 𝑥󸀠(−1) = 7135.52.

The respective solutions are known analytically through (15)
and (16) and can be computed numerically. The second way
yields the three graphs depicted in Figures 4, 5 and 6.

In order to detect the Nehari solutions, we compute the
expression

𝜀

1 + 𝜀
∫

𝑏

𝑎

𝑞 (𝑡) 𝑥
2+2𝜀

(𝑡) 𝑑𝑡 (26)

in (5) for the three solutions depicted in Figure 4 to Figure 6.
Recall that 𝜀 = 1, 𝑎 = −1, and 𝑏 = 1.

Let 𝐼
𝑖
be the numerical value of the above expression for

solutions defined by the initial data 𝑥(−1) = 0, 𝑥󸀠(−1) =

(𝑢
𝑖
𝜂)
2, 𝑖 = 1, 2, 3.
One gets that 𝐼

1
= 𝐼
3
= 1968611.835.The integral over the

even solution is 𝐼
2
= 2582181.527. The Nehari solutions are

those of asymmetric shape.
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