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A set of formulae is provided for the functions slt and clt (known as the lemniscatic

functions), which solve the differential system T_f/? =y, 1—4%5 = —z, as well as the
Emden - Fowler equation z”/ = —2z3. We discuss similarity of the theory of the

lemniscatic functions and that for elementary trigonometric functions and produce a
set of formulae which are similar to those for sint and cost. The addition theorem
for slt is given in various forms, some of them seem to be new. The theory of the
Jacobian elliptic functions is used.
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Let us recall that the usual trigonometric functions can be introduced by
considering the differential system

z' =y,
y, =T, (1)
z(0) =0, y(0)=1.

Multiply the first equation by 2z, the second one by 2y and sum up the both
equations. One gets

d(z? +y*) =0
or
2*(t) +y*(t) =1, 2)
if taking into account the initial conditions in (1).
The relation (2) shows that the functions z and y define a unit circle.

It follows from (1) that
" = -z, (3)

z(0) =0, =z{0)=1.
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Since the equation (3) is autonomous, any function z(a + t), where o is a
constant, is also a solution of (3). The functions z(t) and y(t) are linearly
independent solutions of (3) because the Wronskian

z(t)  y(t) | _ 2(t) v\ _ 202 —
det( z'(t) y'(t) ) —det< y(t) —z(t) ) = —z?(t) —y*(t) = -1 #0.

Then by properties of linear second order differential equations
x(a+t) = Crz(t) + Cay(t), (4)

where C; and C, are some constants to be found. Set ¢t = 0. Then z(a) =
C1z(0) + Coy(0) = Cs. Since

o' (a+1t) = yla+t) = Ciz'(t) + Cay'(t) = Cry(t) — Caz(t),
one obtains that
y(a) = C1y(0) — C2z(0) = Cy.
Thus
z(a+1t) = y(@)z(t) + z()y(t). (5)

The relation (5) is the so called addition theorem for the function z(t) or
simply the usual formula for a sine of two arguments sin(a + 3) = sin acos 6+
sin (3 cos a.

Any other important property of sint and cost can be derived from the
differential system (1) (see [4], for example).

1. Nonlinear sine-like functions

We wish to use now the scheme of the previous section in order to treat the
nonlinear differential system

54 o ©)
1+ y? i
z(0) =0, y(0)=1.

Multiply the first equation by 2z, the second one by 2y and sum up the both
equations. One gets then

d(In[(1 +322)(1 + y?)]) =0
or
In[(1+ z%)(1 + y?)] = const,

which, in its turn, gives
1+2)(1+y°) =2,
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taking into account the initial conditions in (6). The latter expression may be
rewritten as

2?(t) + 22 (O)y* () +42(t) = 1. (7)
It follows from (7) that

.2
2(0) = 1 ®
and L2
() = T ©)

The relation (7) defines a closed planar curve and provides an analogue of the
unit circle (2).
We cannot use arguments of the previous section to deduce an addition

theorem for the functions z(¢) and y(t), defined by (6), because the differential
system of (6) is nonlinear and does not allow the representation (4).

2. Lemniscatic functions

Let us rewrite the differential equations in (6) in the form

{ o (10)

and differentiate the system (10). One obtains by using the relations (10) and
(9) that

" =y (1+22)+y-2z2 = —z(1 +22)(1 + y?) + 2zy - &’
= —2z[1-ya] =221 - y?(1 +2?)] = —22 [1 i xQ)]
= —222,

It follows similarly, by virtue of (10) and (8), that

y' = -2’14y -z 2y =~y +2?) (1 +y?) — 2y -y
=-2y[l+zy]=-2y[1-2?A+9?)] = -2y [l =l yz)]
=293

So it turns out that z(t) and y(t) are solutions of the same nonlinear second
order differential equation
u"’ = —2ud, (11)
subject to the initial conditions z(0) = 0 and y(0) = 1 respectively.
Solutions of (11) satisfy the relations

u'? + u?* = const.

Taking into account the initial conditions one gets that z(t) and y(t) satisfy
the equality
u?+ut=1.
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Then

and the functions z(t) and y(t) can be expressed in the form

z(t)
ds

1—s%

[=}

and

- 1

——

e T (13)
y(?)
1
for t € [0, 4], where A := [ \/113—4- The functions defined by the integral
0 —$8

relations (12) and (13) are known as the lemniscatic functions [5, §22.8]. So
z(t) and y(t) can be identified with sl¢ and clt respectively (the notation sl
and clt for the lemniscatic functions was introduced by C.F. Gauss).

REMARK 1. The usual sint and cost functions can be introduced in the same

sint 1
ds ds
manner, namely, ast = [ == andt= f .
0 s cost L

3. Jacobian elliptic functions

Let us remind basic properties of the Jacobian elliptic functions. The main
three of them are sn(t; k), cn(t; k) and dn(t; k). They can be introduced as
respective solutions of the (nonlinear) differential system

&) = HoT3,
Tl = Hales (14)
:L‘g = —k2.’L'1.’L‘2, 0<k?< 1,

subject to the initial conditions
£:1(0) =0, =z2(0)=1, =z3(0)=1

The functions sn(t; k) and cn(t; k) are periodic 4 K -periodic and dn(t; k) is
2K -periodic, where

1
ds
mm:!wﬁ—%u—ww'

The Jacobian elliptic functions satisfy the following basic relations [1,
Ch. VII, § 1]:
sn?t+cn’t =1, k2sn2t +dn’t =1, (15)
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which, in turn, imply
dn®t — k2 cn?t = K2,

k1 =+1-k2
The functions cn(¢; k) and dn(¢; k) are even and sn(t; k) is odd.

The addition theorems for the Jacobian elliptic functions are known, namely
(3, P. 753-765]:

where

sn(u +v) = (snucnvdnov +snvenudnu) (1 — k2sn? usn?v)~?,
en(u +v) = (cnucnv —snudnusnvdno) (1 — k2sn? usn?v)71,
dn(u 4+ v) = (dnudnv — k?snucnusnvcenv) (1 — k2sn2usn?v)~t.

Other useful relations involving the Jacobian elliptic functions are:

cnt snt 1
pi K= —B 22 e B
i cn(t + K) k1 i dn(t+ K) =k s
sn(t +2K) = —snt, cn(t+2K)= —cnt,

(snt) =cntdnt, (cnt) = —sntdnt, (dnt)’ = —k?sntcnt.

sn(t+ K) =

4. Relations between the Jacobian elliptic functions and
the lemniscatic ones

Other nine Jacobian elliptic functions are introduced as some ratios involving
the basic functions sn, cn and dn . functions above. In what follows we use also
the function sd(t; k) = Z’I’l((i’,z)) It is known ([5, §22.8]) that the lemniscatic

functions can be expressed (at least in some neighborhood of ¢ = 0) as [5,
§ 22.8]

T
slt:kf;—’;, clt=cn£, k=\/i§. (16)
k

In the sequel we derive the relations (16) on the whole real line R using only the

definitions (11), (14) of the lemniscatic functions and properties of the Jacobian
elliptic functions.

PROPOSITION 1. slt = ksd £ and clt =cn £ for k= -\}—5

Proof. Notice that k = k; = % Consider the functions h(t) := ksdt = ki;gg
and g(t) := cnt = z2(t). It follows from (14) and (15) that

2 2

no= (gL I _ kxllm3 — 17 _ k($2$3)$3 — x1(—k3z122)
T3 x5

2 2 52 22
+k k
:k%_%_):m <1+ xgl) kg4 ),
3 3
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g = —z123 = —ﬂmg = —ﬂ(kzxg 4 }¥) = —k2ﬂ(1 +23) = —kh(1 + ¢).
I3 Ty I3
The functions h and g satisfy also

h(0) = kilgg; —0, g¢(0)=22(0)=1.

Then the functions h (£) = ksd £ and g () = cn 1 are solutions of the Cauchy
problem (6). Solutions of the initial value problem (6) are unique since the right
sides of the differential equations in (6) are polynomials and satisfy the Lipschitz
condition in any bounded domain containing {(z,y): |z| <1, |y| < 1}. Hence
the proof. O

The well known properties of slt and clt follow from the basic relations
(16).

COROLLARY 1. The function slt is odd and the function clt is even.

COROLLARY 2. The functions slt and clt are periodic with the minimal period
of 4A, where

1
ds
A= : 17
O/ = (a7
COROLLARY 3. The reduction formulae

sl(t + A) = cl(t) and cl(t+ A) = —sl(t) (18)

are valid.

REMARK 2. Various reduction formulae can be derived for the functions slt
and clt likely as in the case of the elementary functions sint and cost. A
constant A serves as the substitution for m/2.

PROPOSITION 2. The following relations are valid for anyt € R:
sl'(t) = cl(®)(1 +s12(t), cl'() = —sl(t)(1 + cI*(2)),

2(t) +sl(t) =1, o) + (@) =1, slP(t) +s(t) () + c?(t) =1,
St + A) = cl(t), cl(t+ A) = —sl(t), where A= /O 1 71%.

Proof. Proofs can be found in [6, Propositions 7.4, 7.5 and 7.6, Corolla-
ry 7.3 ). O
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5. Summation results

The addition theorem for the lemniscatic functions was obtained by L. Euler
in the integral form (for historical remarks one may consult [2, Sec. 2.3]). Let
us mention that various forms of the sum formulae can be obtained directly
from those for the Jacobian elliptic functions.

PROPOSITION 3.

_ sl(a) cl(B) + cl(a) sl(B)
Ao+ 6) = T @) i@ d@ <l(B)

PROPOSITION 4.

(@) cl(B) —sl(@) sI(B)
cda+h) =1 sl(@) s1(B) cl(a) cl(B)

For the proofs one may consult [6].
The alternative forms of addition theorems are given below. Investigations

of the sum formula for sl¢ go back to Fagnano and L. Euler [2, §§ 2.1, 2.2, 2.3].
The sum formula was obtained rather in the form

b e sl(e)y/1 — sI*(B) + sl(g)\/l_—syi(a—) |

1+ sl(a)sl?(8)

It was derived from the integral relation (12) and therefore is applicable in
some vicinity of zero. The formulae (19) and (20) are applicable for any ¢ and
are similar to those for the functions sint and cost.

PROPOSITION 5.

_ sl@)sl(8) + ! (a)sl(8)
sl (Ot+ﬂ) = 1 +sl2(a) 512(,@) .

PROPOSITION 6.

_d'(@)cl(B) +cl(a) '(B)

sl(a+8) = 1+ cl®(a) c?(8)

PROPOSITION 7.

_sl'(@) cl(B) +sl(e) cl'(B)
Cl(a‘}'ﬂ)_ 1—|—S].2(a)C12(,6) '

The proofs are given in [7].
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6. Formulae

We summarize here the main relations for the lemniscatic functions indicating
also their counterparts in the theory of elementary trigonometric functions.
Proofs are omitted since the formulae are obtained from the basic summa-
tion relations using the same type arguments as those used in the theory of
elementary trigonometric functions.

sl(a) cl(B) % cl(a) sl(B)
1 F sl(a) sl(B) cl(a) cl(B)

sllaxB) =

sin(a + B8) = sinacos B £ cosasin 8

_ sl(@)sl'(8) £sl'(a)sl(B)

sla % B) 1 +s2(a) s?(6)

sin(a + B) = sinasin’ B + sin’ asin

cl(a) cl'(8) £ cl'(a) cl(B)

sllatf)=7F 1+ c?(a) cl?(B)

sin(a £ B) = F(cos acos’ B = cos’ acos ()

cl(a) cl(B) F sl(a) sl(B)

s ) = T L ey slraleep)
cos(a £ B) = cosacos B F sinasin 3
_ sl'(a) cl(B) £ sl(@) cl'(B)
ot h) = = ) l(B)
cos(a £ B) = sin’ acos B + sinacos’ B
2¢l (28 gl (2FE
cl(a) £ l(6) = — 5 ik - _)
1+sl (9%@) sl (%)
sina + sin 8 = 2sin (a = ﬂ) sin’ (9:;—'6)
—2cl' (2£2) el (232
sl(a) £sl(8) = C2 ( i 2 2< 2_>
1+cl? (252) o” (252)

i
sina 4 sin 8 = —2cos’ (a b
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sin o cos 8 = cos asin 3

in asin’ B =+ sin’ asin 8

s cos' 3 % cos’ acos 3)

. cosacos 3 F sinasin 8

sin’ acos B % sinacos’ B

s’ (a:l:[j cos <a¢ﬂ>
2 2
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2cl (28] g (28
0=

cosa + cos B = 2cos (a;—ﬁ) sin’ (_a—ﬂ)
2
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e %j%

sl(20) = Sl_z(si()a_i%

sl(20) = %

(20) = 2sl(c) c11(+a)S 1(41(:):)312(01))

sl = %‘1(‘2‘1)4‘;_;()0‘2

ey - 25@) Cll(f)c S(Z)CIQ (@)

) = %

cl(2a) = Sl'(al) i‘(sg(z)sggx)l’(a)

(i) SH(B) = (e — B) — cl(a+ B) 1+ () sl*(B)

2

_cla—p) —cla+p) 1+ sl(a) cl?(B)

2

sinasin 8 =

sin2a = 2sinacos o

sin 2 = 2sin a.cos a

sin 2a = 2sin asin’ o

sin2a = 2sinacos

sin2a = —2cosa cos’ &

sin 2o = 2 sin . cos

cos2a = cos? a — sin’ &

cos2a = sin’ a.cosa + sina cos’ &

cos(a — ) — cos(a + B)

2
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sin 2a = 2sina cos &

sin 2a = 2sin a cos o

. . o !
sin 2a = 2sinasin’ a

sin 2a = 2sin a cos &

sin 20 = —2cos a cos’ o

sin 2a = 2sina cos &

2

. 2
cos2a = cos“a —sin” a

. . ’
- sm' o cosa + sina cos &

cos(a — ) — cos(a + B)
) 2
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c(a+ B8) +cl(a—B) 1+ c?(a)sl*(B8) |

cl(a)cl(B) = 2 1+s2(8)
_cl(a+B) +cl(a—B) 1+s*(a) cl*(B)
B 2 1+sl%(a)
T E cos(a+ ) -;— cos(a — B)
_sl(a+8)+sla—p) 1+ s1?(a) s12(3)
sl(a) cl(B) = 5 T sl2(ﬂ)
_slla+B) +sl(a—p) 1+ cl(a) cl?(B)
- 2 1+ cl?()
sinacos 8 = sinie L) ;_ Sinlol — )
1+s%(6) 14 cl(a) 1+s(@) _ 1+ d*(a)
1+s3(a)sl?(8) 14 c*(a)c®(B) 1+sl'a) 1+c%)
1+s2(8) 1+s%(a) 1+c?(8) 1+c%(a)

L+c(@)s?(8) 1+s(a)c®(8) 1+sP(@)c®B) 1+cl*(a)s*(B)

REMARK 3. The last four formulae seem to have no analogues in the elemen-
tary trigonometry. They can be proved easily by using the relations

1—cl?(a)

_ L= s?(a)
1+ c*(@)’

2
sl*(a) = m,

cl?(a)

which follow from the identity si*(c) + s1*(a) cl?(t) + cl(t) = 1.
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Piezimes par lemniskatiskajam funkcijam
Kopsavilkums

Uzradita virkne formulu, kas saista lemniskatiskas funkcijas slt un clt, kuras apmie-

rina diferencialvienadojumu sistemu HL;;; =y, %5 = —z, ka ar1 Emdena—Faulera
vienadojumu z" = —2x3. Apskatita lemniskatisko funkciju teorijas Iidziba ar ele-

mentaro trigonometrisko funkciju teoriju, uzradot formulas lemniskatiskam funkcijam
un to analogus funkcijam sint un cost. Atrasti vairaki ekvivalenti saskaitiSanas
teorémas formuléjumi funkcijai slt, no kuriem dazi skiet Iidz $§im nav tikusi apskatiti.
Izklasta tiek izmantota Jakobi eliptisko funkciju teorija.




