Abstracts of MMA2009, May 27 - 30, 2009, Daugavpils, Latvia © 2009

CORDIAL VOLTERRA INTEGRAL EQUATIONS

GENNADI VAINIKKO

University of Tartu, Estonia Liivi 2, Tartu State, Estonia E-mail: gennadi.vainikko@ut.ee

Consider the class of Volterra operators $(Vu)(t) = \int_0^t K(t,s)u(s)ds$, $0 \le t \le T$, having the following property (A): V is a bounded operator in C[0,T] and $u_r(t) = t^r$, $0 \le r < \infty$, are eigenfunctions of V. Such an operator in noncompact in C[0,T]. It occurs that V has property (A) if and only if its kernel has the form $K(t,s) = t^{-1}\varphi(s/t)$, $0 \le s \le t \le T$, where $\varphi \in L^1(0,1)$. Thus we actually study the class of operators

$$(V_{\varphi}u)(t) = \int_0^t t^{-1}\varphi(s/t)u(s)ds = \int_0^1 \varphi(x)u(tx)dx, \ 0 \le t \le T.$$

We call $\varphi \in L^1(0, 1)$ the core of V_{φ} and V_{φ} itself an operator with an core, or simply cordial operator. We introduce in $L^1(0, 1)$ a multiplication operation $\varphi \star \psi$ so that $V_{\varphi}V_{\psi} = V_{\varphi\star\psi}$. So $L^1(0, 1)$ and the class of cordial operators become commutative Banach algebras which are isometrically isomorphic. In this way we establish formulae for the spectrum $\sigma_m(V_{\varphi})$ of V_{φ} as an operator in $C^m[0,T]$:

$$\sigma_0(V_{\varphi}) = \{0\} \cup \{\hat{\varphi}(\lambda) : \lambda \in \mathbb{C}, \operatorname{Re}\lambda \ge 0\}, \ m = 0,$$

$$\sigma_m(V_{\varphi}) = \{0\} \cup \{\hat{\varphi}(k) : k = 0, ..., m - 1\} \cup \{\hat{\varphi}(\lambda) : \operatorname{Re}\lambda \ge m\}, \ m = 1, 2, ...,$$

where $\hat{\varphi}(\lambda) = \int_0^1 \varphi(s) s^{\lambda} ds$. Note that $\sup \{ | \hat{\varphi}(\lambda) | : \operatorname{Re} \lambda \ge m \} \to 0$ as $m \to \infty$. In particular, we localise the spectra of Diogo's, Lighthill's and some other noncompact Volterra integral operators occuring in the practice.

We also treat the Volterra integral operators of a more general form

$$(V_{\varphi,a}u)(t) = \int_0^t t^{-1}\varphi(s/t)a(t,s)u(s)ds, \ 0 \le t \le T,$$

where $\varphi \in L^1(0,1)$, $a \in C^m (0 \le s \le t \le T)$, $m \ge 0$. It occurs that $\sigma_m(V_{\varphi,a}) = a(0,0)\sigma_m(V_{\varphi})$. In particular, if a(0,0) = 0 then $\sigma_m(V_{\varphi,a}) = \{0\}$ and $V_{\varphi,a}$ as an operator in $C^m[0,T]$ occurs to be compact.

We prove the convergence and establish error estimates of the polynomial collocation methods for the Volterra integral equation $\mu u = V_{\varphi,a}u + f$ assuming that $\mu \neq 0, \ \mu \neq a(0,0)\hat{\varphi}(k), \ k = 0, 1, ...,$ and that $f \in C^m[0,T]$ where *m* is sufficiently large so that $\mu \notin a(0,0)\sigma_m(V_{\varphi})$; in particular, m = 0suits if $\mu \notin a(0,0)\sigma_0(V_{\varphi})$, i.e., $\mu \neq a(0,0)\hat{\varphi}(\lambda)$ for $\operatorname{Re}\lambda \geq 0$.