ON SOME FUZZY CATEGORIES OF MANY-VALUED TOPOLOGICAL SPACES

INGRiDA ULJANE

Department of Mathematics, University of Latvia
Zellu iela 8, LV - 1002, Riga, Latvia
Tel.: +371-7033726
E-mail: uljane@mail.com

The concept of a fuzzy category was introduced by A.Šostak in [1] and later was studied in a series of papers see, e.g. [2].

First we recall the concept of an (L-)fuzzy category in the form appropriate for our merits. Let $L = (L, \leq, \land, \lor, *)$ be a cl-monoid with top element 1 and bottom element 0, in particular a complete Heyting algebra (when $\land = *$). An (L)-fuzzy category is a pair (C, μ) where C is an ordinary category with the class of objects $O(C)$, the class of morphisms $M(C)$, and $\mu : M(C) \to L$ an L-subclass of the class of morphism such that: $\mu(g \circ f) \geq \mu(g) * \mu(f)$ whenever composition $g \circ f$ is defined in the category C and for each $X \in O(C)$ $\mu(e_X) = 1$ where e_X is the identity morphism.

On the other hand in [3] we studied some categories of many-valued sets and many-valued topological spaces, in particular, categories $\text{SET}(L)$, $\text{TOP}(L)$ and $\text{FTOP}(L)$. The aim of this talk is to introduce new fuzzy categories $\mathcal{F}-\text{SET}(L)$, $\mathcal{F}-\text{TOP}(L)$ and $\mathcal{F}-\text{FTOP}(L)$ by applying the method of fuzzification [2] to the categories $\text{SET}(L)$, $\text{TOP}(L)$ and $\text{FTOP}(L)$, to discuss some properties of these fuzzy categories and relations between them.

REFERENCES

