Abstracts of MMA2009, May 27 - 30, 2009, Daugavpils, Latvia © 2009

COMPARISON OF SPEEDS OF CONVERGENCE IN CERTAIN FAMILIES OF FUNCTIONAL SUMMABILITY METHODS

ANNA ŠELETSKI

Tallinn University Narva road 25, Tallinn, Estonia E-mail: annatar@hot.ee

Speeds of convergence in certain family of summability methods for functions are compared in the talk. The results introduced here extend the results proved in [1] for "matrix case" to "integral case" and are partly published in [2].

1. Let us denote by X the set of the functions x = x(u) defined for $u \ge 0$, bounded and measurable by Lebesgue on every finite interval $[0, u_0]$. Suppose that A is a transformation of functions x = x(u) (or, in particular, of sequences $x = (x_n)$) into functions $Ax = y = y(u) \in X$. If the limit $\lim_{u\to\infty} y(u) = s$ exists then we say that x = x(u) is convergent to s with respect to the summability method A, and write $x(u) \to s(A)$.

One of the basic notions in our talk is the notion of speed of convergence. Let $\lambda = \lambda(u)$ be a positive function from X such that $\lambda(u) \to \infty$ as $u \to \infty$. We say that a function x = x(u) is convergent to s with speed λ if the finite limit $\lim_{u\to\infty} \lambda(u) [x(u)-s]$ exists. In order to characterize the speed of convergence of x also the estimation $\lambda(u) [x(u) - s] = O(1)$ as $u \to \infty$, is used. We say that x is convergent with speed λ with respect to the summability method A if the function $Ax = y = y(u) \in X$ is convergent with speed λ .

2. We discuss a Riesz-type family $\{A_{\alpha}\}$ of summability methods A_{α} , where $\alpha > \alpha_0$ and α_0 is some fixed number, and which transform functions x = x(u) into functions $A_{\alpha}x = y_{\alpha}(u)$. This family is defined with the help of relation $A_{\beta} = C_{\gamma,\beta} \circ A_{\gamma}$ ($\beta > \gamma > \alpha_0$), where $C_{\gamma,\beta}$ is certain integral transformation (see e.g. [2]). For example, the Riesz methods (R, α) and certain generalized Nörlund methods $(N, p_{\alpha}(u), q(u))$ form Riesz-type families. A Riesz-type family has the monotony property: $x(u) \to s(A_{\gamma}) \Longrightarrow x(u) \to s(A_{\beta})$ for any $\beta > \gamma > \alpha_0$.

It is important to be able to compare the speed of convergence of x = x(u) with respect to different methods A_{γ} and A_{β} if $\beta > \gamma$ and choose a method A_{α} close to optimal for converging x. For a given speed $\lambda = \lambda(u)$ and a fixed number $\gamma > \alpha_0$ the speeds $\lambda_{\beta} = \lambda_{\beta}(u)$ and $\lambda_{\delta} = \lambda_{\delta}(u)$ $(\beta > \delta > \gamma)$ can be found (see [2]) such that for all $\beta > \delta > \gamma$ the following implications are true:

$$\begin{split} \lambda(u) \left[y_{\gamma}(u) - s \right] &\to t \Longrightarrow \lambda_{\beta}(u) \left[y_{\beta}(u) - s \right] \to t, \\ \lambda(u) \left[y_{\gamma}(u) - s \right] &= O(1) \Longrightarrow \lambda_{\beta}(u) \left[y_{\beta}(u) - s \right] = O(1), \\ \lambda(u) \left[y_{\gamma}(u) - s \right] &= O(1), \ \lambda_{\beta}(u) \left[y_{\beta}(u) - s \right] \to t \Longrightarrow \lambda_{\delta}(u) \left[y_{\delta}(u) - s \right] \to t. \end{split}$$

REFERENCES

- U. Stadtmüller and A. Tali. Comparison of certain summability methods by speeds of convergence, Analysis Mathematica, 29 (3), 2003, 227–242.
- [2] A. Šeletski and A. Tali. Comparison of speeds of convergence in Riesz-type families of summability methods, Proc. Estonian Acad. Sci., 57 (2), 2008, 70–34.