
Abstracts of MMA2009, May 27 - 30, 2009, Daugavpils, Latvia

c© 2009

GREEN’S FUNCTIONS FOR PROBLEMS WITH
NONLOCAL BOUNDARY CONDITIONS

SVETLANA ROMAN and ARTŪRAS ŠTIKONAS
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We analyze Green’s functions for the stationary differential problem

Lu := −(p(x)u′)′ + q(x)u = f(x) (1)

where p(x) ≥ p0 > 0, p ∈ C1[0, 1], q ∈ C[0, 1], with nonlocal boundary conditions

〈l0, u〉 = γ0〈k0, u〉, (2)
〈l1, u〉 = γ1〈k1, u〉, (3)

where 〈li, u〉 := 〈li(x), u(x)〉 is the classical part and 〈ki, u〉 := 〈ki(x), u(x)〉, i = 0, 1, is the nonlocal
part of these conditions.

We find Green’s functions for problems with various types of conditions, using the general formula
that we have obtained for problem (1)–(3). For example, the classical part of conditions can be

〈li, u〉 = αiu
′(i) + βiu(i), where |αi|+ |βi| > 0, i = 0, 1,

and the nonlocal part can be

〈ki, u〉 =
N∑

j=1

(δiju
′(ξij) + γiju(ξij)) or 〈ki, u〉 = γi

∫ 1

0

ρi(t)u(t) dt,

where ρi(t), i = 0, 1, are weight functions.
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