Abstracts of MMA2009, May 27 - 30, 2009, Daugavpils, Latvia © 2009

ON OSCILLATION OF NTH ORDER ODE

TATJANA GARBUZA

Daugavpils University Parades 1, LV-5400, Daugavpils, Latvia E-mail: garbuza@inbox.lv

We consider positively homogeneous the N^{th} order differential equations of the type

$$x^{(n)} = h(t, x) \tag{1}$$

where h possesses the property that h(t, cx) = ch(t, x) for $c \ge 0$. This class includes the linear equations $x^{(n)} = p(t)x$ and piece-wise linear ones $x^{(n)} = k_2x^+ - k_1x^-$. We use the definition.

DEFINITION 1. [I.T. Kiguradze, T.A. Chanturia, [2]]

Let us call equation (1) like [l, n-l] - oscillatory equation in interval I, if there exist $t_1, t_2 \in I$, $t_1 < t_2$, and nontrivial solution of (1) such that

$$x^{(i)}(t_1) = 0, \quad i = 0, \dots, l-1,$$

 $x^{(i)}(t_2) = 0, \quad i = 0, \dots, n-l-1.$

We describe the oscillatory behavior of positively homogeneous equations in terms of (N - 2, 2)-oscillation in $[a, +\infty)$.

Properties of (N-2, 2)-solutions of positively homogeneous equations are useful for investigations of some nonlinear boundary value problems.

REFERENCES

- F. Sadyrbaev. Multiplicity of solutions for fourth order nonlinear boundary value problems. Proc. Latvian Acad. Sciences, 7/8 (576/577), 1995, 107 – 111.
- [2] I.T. Kiguradze, T.A. Chanturia. Asymptotic properties of solutions of nonautonomous ordinary differential equations. "Nauka", Moscow, 1990. (in Russian)
- [3] T.Garbuza. Results for sixth order positively homogeneous equations. Mathematical Modelling and Analysis, 14 (1), 2009, 25–32.