ALTERNATING DIRECTION METHOD FOR THE TWO-DIMENSIONAL DIFFUSION EQUATION WITH NONLOCAL INTEGRAL CONDITION

R. ČIUPAILA ${ }^{1}$, K. JAKUBĖLIENE ${ }^{2}$, M. SAPAGOVAS ${ }^{2}$

${ }^{1}$ Vilnius Gediminas Technical University
Saulėtekio al. 11,LT-10223, Vilnius, Lithuania
${ }^{2}$ Institute of Mathematics and Informatics
Akademijos g. 4, LT-08663, Vilnius, Lithuania
E-mail: m.sapagovas@ktl.mii.lt, gibaite@gmail.com

We consider the implicit alternating direction method for solving the folowing two-dimensional time-dependent diffusion equation:

$$
\frac{\partial u}{\partial t}=\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}+f(x, y, t), \quad 0 \leqslant x, y \leqslant 1, \quad 0<t<T
$$

with initial condition

$$
u(x, y, 0)=\varphi(x, y)
$$

and boundary conditions

$$
\begin{aligned}
& u(0, y, t)=\mu_{1}(y, t), \quad u(1, y, t)=\mu_{2}(y, t) \\
& u(x, 1, t)=\mu_{3}(x, t), \quad u(x, 0, t)=\mu_{4}(x) \mu(t)
\end{aligned}
$$

and the nonlocal boundary condition

$$
\int_{0}^{1} \int_{0}^{1} u(x, y, t) d x d y=m(t)
$$

where $u(x, y, t)$ and $\mu(t)$ are unknown functions.
We solve the system of one-dimensional difference equations by two different methods [1], [2].
The influence of the condition $\mu(0)=\mu(1)=0$ is analysed.

REFERENCES

[1] R. Čiegis. Economical difference schemes for the solution of a two-dimensional parabolic problem with an integral condition. Differ. Equations, 41 (7) pp. 1025-1023, 2005..
[2] R. Čiupaila, K. Jakubèlienė and M. Sapagovas. Solution of two-dimensional elliptic equation with nonlocal condition. In: Mathematical Modelling and Analysis, 13, 2008 (In Press).
[3] J. R. Cannon, Y. Lin and A. L. Matheson. The solution of the diffusion equation in two-space variables subject to specification of mass. Applic. Anal, 50 1-15, 1993.

