CHANGE OF NUMBER OF PERIOD ANNULI IN LIENARD TYPE EQUATIONS

SVETLANA ATSLĒGA

Latvia University of Agriculture
Liela iela 3, LV-3001, Jelgava, Latvia
E-mail: svetlana.atslega@llu.lv

We consider Lienard type equation

$$
\begin{equation*}
x^{\prime \prime}+\frac{2 x}{1-x^{2}} x^{\prime 2}+g(x)=0 \tag{1}
\end{equation*}
$$

where $g(x)=-x(x+a)\left(x^{2}-c^{2}\right)(x-b)$, parameters a, b, c are positive and $a>c$ and $b>c . G(x)$ is a primitive of $g(x)$.

We are looking for so called period annuli.

THEOREM 1. Let M_{1} and M_{2} be non-neighboring points of maximum of the function $G(x)$. Suppose that any other local maximum of $G(x)$ in the interval $\left(M_{1}, M_{2}\right)$ is strictly less than $\min \left\{G\left(M_{1}\right) ; G\left(M_{2}\right)\right\}$. Then there exist at least one nontrivial period annulus.

We use transformation by Sabatini [1] which allows the reduction of equation (1) to a conservative one of the form

$$
\begin{equation*}
u^{\prime \prime}+h(u)=0 \tag{2}
\end{equation*}
$$

We consider also the respective primitive function $H(u)=\int_{0}^{u} h(s) d s$.
The existence of period annulus is dependent on the system

$$
\begin{equation*}
H(a)>0 \quad \text { and } \quad H(b)>0 \tag{3}
\end{equation*}
$$

REFERENCES

[1] M. Sabatini. On the period function of $x^{\prime \prime}+f(x) x^{\prime 2}+g(x)=0$. J. Diff. Equations, 196, 2004, $151-168$.

