COMBINED SPLINES IN SMOOTHING HISTOPOLATION

SVETLANA ASMUSS ${ }^{1,3}$, NATALIA BUDKINA ${ }^{2,3}$, JURIS BREIDAKS ${ }^{1}$

${ }^{1}$ University of Latvia
Zellu street 8, Riga, LV-1002, Latvia
${ }^{2}$ Riga Technical University
Meza street 1/4, Riga, LV-1048, Latvia
${ }^{3}$ Institute of Mathematics and Computer Science of University of Latvia
Rainis blvd. 29, Riga, LV-1459, Latvia
E-mail: svetlana.asmuss@lu.lv, budkinanat@gmail.com, juris.breidaks@csb.gov.lv

Our talk deals with space $S\left(T, A_{1} \times A_{2}\right)$ of combined splines [1] defined by continuous linear operators $A_{1}: X \rightarrow \mathbb{R}^{n}, \quad A_{2}: X \rightarrow \mathbb{R}^{m}$ and $T: X \rightarrow Y$ in Hilbert spaces X and Y. Such splines give us a possibility to take into account interpolation conditions of two different types described by A_{1} and A_{2} correspondingly.

For given vectors $\boldsymbol{u} \in \mathbb{R}^{n}, \boldsymbol{v} \in \mathbb{R}^{m}$ and parameters $\delta, \omega, \varepsilon_{i}>0, i=1, \ldots, n$, we consider the following conditional minimization problems:

$$
\begin{gathered}
\|T x\|^{2}+\frac{1}{\omega}\left\|A_{1} x-\boldsymbol{u}\right\|^{2} \longrightarrow \min _{A_{2} x=\boldsymbol{v}}, \quad\|T x\| \longrightarrow A_{\|} x-\boldsymbol{u} \| \leq \delta, \quad A_{2} x=\boldsymbol{v}, \\
\|T x\| \longrightarrow{ }_{\left|\left(A_{1} x\right)_{i}-u_{i}\right| \leq \varepsilon_{i},}, \min _{i=1, \ldots, n,}, A_{2} x=\boldsymbol{v} .
\end{gathered}
$$

The aim of this talk is to present some results on solutions of these problems obtained under the assumptions:
$\operatorname{Ker} T \cap \operatorname{Ker} A_{1} \cap \operatorname{Ker} A_{2}=\{0\}, \quad A_{1}(X)=\mathbb{R}^{n}, \quad A_{2}(X)=\mathbb{R}^{m}, \quad T\left(\operatorname{Ker} A_{1} \cap \operatorname{Ker} A_{2}\right) \quad$ is closed.
In particular we consider the problem of approximation of a given histogram with boundary conditions by taking

$$
T x=x^{(r)}, \quad\left(A_{1} x\right)_{i}=\int_{t_{i-1}}^{t_{i}} x(t) d t, i=1, \ldots, n, \quad\left(A_{2} x\right)_{1}=x(a), \quad\left(A_{2} x\right)_{2}=x(b), \quad x \in W_{2}^{r}[a, b] .
$$

This investigation is closely related to our previous works on smoothing histopolation [2], [3].

REFERENCES

[1] E. Rimša. Combined splines. In: Continuous functions on topological spaces, Riga, 1986, 155-158 .(in Russian)
[2] N. Budkina. On a method of construction of smoothing histosplines. Proc. Estonian Acad. Sci. Phys. Math., $\mathbf{5 3}$ (3), 2004, 148-155.
[3] S. Asmuss, N. Budkina. Splines in convex sets under constraints of two-sided inequality type in a hiperplane. Mathematical Modelling and Analysis, 13 (4), 2008, 461-470.

