MATHEMATICAL MODELLING AND ANALYSIS Abstracts of the 9th International Conference MMA2004, May 29-31, 2004, Jūrmala, Latvia © 2004 LZALUMI

GENERALIZED RIESZ METHOD AND CONVERGENCE ACCELERATION

IVAR TAMMERAID

Tallinn University of Technology Ehitajate tee 5, 19086, Tallinn, Estonia E-mail: itammeraid@edu.ttu.ee

In many fields of numerical mathematics we have some problems of convergence acceleration. Though mainly are used non-linear methods (see [3], in several cases are preferred linear methods. In this talk we deal with the possibilities to use generalized Riesz method for acceleration.

Let X and Y be Banach spaces and $\mathcal{L}(X, Y)$ be a space of linear bounded operators from X into Y. A sequence $x = (\xi_k)$ ($\xi_k \in X$) is called λ -bounded (λ -convergent) if $\beta_k = O(1)$ ($\exists \lim \beta_k$), while $\beta_k = \lambda_k (\xi_k - \xi)$ with $\xi = \lim \xi_k$, $\lambda = (\lambda_k)$ and $0 < \lambda_k \nearrow$. Let $m_X^{\lambda}(c_X^{\lambda})$ be a set of all λ -bounded (λ convergent) sequences. A sequence $x = (\xi_k)$ is called summable by a generalized method $\mathcal{A} = (A_{nk})$ if $y = (\eta_n)$ with $\eta_n = \sum_k A_{nk}\xi_k$ and $A_{nk} \in \mathcal{L}(X, Y)$ is convergent. The transformation \mathcal{A} is called accelerating λ - boundedness (λ -convergence) if $\mathcal{A}m_X^{\lambda} \subset m_Y^{\mu}$ with $\lim \mu_n / \lambda_n = \infty$. Let us denote by (\Re, P_n) or shortly by \Re the generalized Riesz method, defined by

$$R_{nk} = \begin{cases} R_n P_k & k = 0, 1, \dots, n, \\ \theta & k > n, \end{cases}$$

where $P_k, R_n \in \mathcal{L}(X, X)$, while R_n is determined by

$$R_n \sum_{k=0}^n P_k \zeta = \zeta \quad (\zeta \in X, \ n \in \mathbf{N}_0) \,.$$

In [2] are proved sufficient conditions for the inclusion $\Re m_X^{\lambda} \subset m_X^{\mu}$. In [1] are studied several inverse theorems, so-called Tauberian theorems for generalized Riesz method \Re in the case $\lambda_n = O(1)$ or $\mu_n = O(1)$. We study the case $\lambda_n \neq O(1)$ or $\mu_n \neq O(1)$ and prove so-called Tauberian remainder theorems for the method \Re .

REFERENCES

- T. Sõrmus. Tauberian theorems for generalized summability methods in Banach spaces. Proc. Estonia Acad. Sci. Phys. Math, 49 (3), 2000, 170 - 182.
- [2] I. Tammeraid. Generalized linear methods and convergence acceleration. Math. Model. Anal., 8 (4), 2003, 329 -335.
- [3] R. Thukral. Introduction to the improved Levin-type algorithms for accelerating convergence of sequence. J. Comput. Appl. Math., is to be published.