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In many fields of numerical mathematics we have some problems of convergence acceleration.
Though mainly are used non-linear methods (see [3], in several cases are preferred linear methods.
In this talk we deal with the possibilities to use generalized Riesz method for acceleration.

Let X and Y be Banach spaces and £ (X,Y") be a space of linear bounded operators from X into
Y. A sequence z = (&) (& € X) is called A-bounded (A-convergent) if 5 = O(1) (3lim Sy), while
Br = Ak (& — &) with € =1lim &, A = (\) and 0 < A\ /. Let m% (c) be a set of all A-bounded (\-
convergent) sequences. A sequence z = (§) is called summable by a generalized method A = (A4,,x)
if y = (nn) with n, = >, Anré&, and A, € L(X,Y) is convergent. The transformation A is called
accelerating A- boundedness (A-convergence) if Am?% C m}. with lim y1,,/\,, = oo. Let us denote by
(R, P,,) or shortly by R the generalized Riesz method, defined by

Cf R.Pe k=0.1,....n,
R”’“{e k> n,

where Py, R, € L (X, X), while R,, is determined by

Ry> Pl=( (C€X, neNy).
k=0

In [2] are proved sufficient conditions for the inclusion ®m?% C m’. In [1] are studied several

inverse theorems, so-called Tauberian theorems for generalized Riesz method R in the case A, = O(1)
or pu, = O (1). We study the case A\, # O(1) or p,, # O (1) and prove so-called Tauberian remainder
theorems for the method R.
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