MATHEMATICAL MODELLING AND ANALYSIS Abstracts of the 9th International Conference MMA2004, May 29-31, 2004, Jūrmala, Latvia © 2004 LZALUMI

ESTIMATIONS OF THE NUMBER OF SOLUTIONS OF THE SECOND ORDER AUTONOMOUS BOUNDARY VALUE PROBLEMS

SVETLANA OGORODNIKOVA

University of Daugavpils Parādes iela 1, LV-5400, Daugavpils, Latvia E-mail: oglana@tvnet.lv

We investigate the equations

$$x'' = -\alpha x + x^3, \quad \alpha > 0 \tag{1}$$

and

$$x'' = -\alpha x + x^2, \quad \alpha > 0 \tag{2}$$

together with the boundary conditions

$$x(0) = 0, \quad x(1) = 0 \tag{3}$$

and discuss generalizations of these problems.

The first equation has the heteroclinic solution (solution with "infinite period" [1, Ch. 1, § 1.4]) with the orbit connecting two saddle points at $(-\sqrt{\alpha}; 0)$ and $(\sqrt{\alpha}; 0)$.

THEOREM 1. The problem (1), (3) has exactly 2i nontrivial solutions if

$$i^2 \pi^2 < \alpha < (i+1)^2 \pi^2, \quad i = 0, 1, \dots$$
 (4)

The orbits of this solution lie inside the region formed by two heteroclinic solutions connecting the saddle points.

The second equation has the homoclinic solution of infinite period [1] which starts and ends at the unique saddle point at $(\alpha; 0)$.

THEOREM 2. The problem (2), (3) has exactly 2i + 1 nontrivial solutions if the condition (4) holds. The orbits of 2i solutions lie inside the region formed by the homoclinic solution, the orbit of one solution lies outside this region.

REFERENCES

[1] R. Seydel. Practical bifurcation and stability analysis. From equilibrium to chaos. Springer, New York, 1994.