MATHEMATICAL MODELLING AND ANALYSIS Abstracts of the 9th International Conference MMA2004, May 29-31, 2004, Jūrmala, Latvia © 2004 LZALUMI

THE VORTEX FORMATION IN A HORIZONTAL FINITE CYLINDER BY ALTERNATING ELECTRIC CURRENT

ANDRIS BUIKIS¹ and HARIJS KALIS²

Institute of Mathematics of Latvian Academy of Sciences and University of Latvia 1 Akadēmijas laukums, Rīga LV-1524, Latvia E-mail: ¹buikis@ latnet.lv, ²harijs.kalis@lu.lv

The distribution of electromagnetic fields and forces induced by a three phase axially-symmetric system of electrical current in a horizontal cylinder of finite length has been investigated and calculated [1]. The alternating current is fed to every of 9 discrete circular conductors-electrodes, which are placed on the internal wall of the cylinder.

The viscous incompressible flow of electroconductive liquid-electrolyte are obtained by the finitedifference method, using the monotonous vector schemes.

The average axially-symmetric motion of electrolyte and vortex distribution in a cylinder has been obtained in dependence of electromagnetic forces and of velocity distribution at the inlet of the cylinder:

- 1. The vortex formation from the Lorentz forces inside the cylinder by the electrode,
- 2. The vortex-breakdown formation from the swirl velocity at the inlet of the cylinder.

The distribution of vortex is essentially depending of the connection from electrode.

REFERENCES

 A. Buikis and H. Kalis. Flow and temperature calculations of electrolyte for a finite cylinder in the alternating field of finite number circular wires. *Magnetohydrodynamics*, 40 (1), 2004, 77 - 90.