ACTA SOCIETATIS MATHEMATICAE LATVIENSIS Abstracts of the 5th Latvian Mathematical Conference, April 6–7, 2004, Daugavpils, Latvia © 2004 LMB

MATHEMATICAL MODEL OF THE CHURNING AROUND THE ACUTE EDGE OF A BAR

VLADIMIR GUDKOV

Institute of Mathematics and Computer Science, University of Latvia Raiņa bulvāris 29, LV-1459, Rīga, Latvia E-mail: gudkov@latnet.lv

It is known that a vortex in the form of a toroid arises in the area of the acute edge of a bar (cathode) when a flux of the superfluid liquid (electrons) is striving along this bar (cathode). We construct a mathematical model of the churning on the base of wave equation

$$\frac{\partial^2 u}{\partial t^2} - \frac{\partial^2 u}{\partial x^2} - \frac{\partial^2 u}{\partial y^2} - \frac{\partial^2 u}{\partial z^2} + \frac{dQ}{du} = 0, \qquad Q = \frac{\mu^2}{4}(u^2 - 1)^2 + C$$

Here we add a constant C to the classical form of potential Q for to describe the relaxation of a flux of the superfluid liquid in the area of the acute edge of the bar. Just the same potential Q can be used for to describe a magnetic flux in the area of the acute edge of the cathode. However we can use also potential $Q = C - \mu^2 u^2$ as more corresponding to a distribution of electrons in the area of the acute cathode. An energy installation with an efficiency coefficient of 3000, where a vortex of electrons has the form of a toroid, belongs to Shoulders [1].

Matrix solutions of wave equations with different potentials are defined in article [2]. For our model it is sufficient to use only complex solution u_1 and matrix solution u_2 as follows

$$u_1(\phi) = \exp(i\phi), \quad u_2(\phi, \vec{a}) = \cos\phi E_2 + \sin\phi \sum_{j=1}^3 a_j H_j = \exp(\phi \vec{a} H),$$

where \vec{a} is unit vector, H_1, H_2, H_3 are unit quaternions and ϕ is continuous function on spatial and time variables. Let us take z-axis as the continuation of the bar (cathode) axis and consider x, y-plane as a complex plane. Then solution u_1 forms a unit circle S^1 on this plane with the center O situated on the acute edge. Matrix solution u_2 describes a field which rotates a unit sphere S^2 about vector \vec{a} by angle 2ϕ . Each point on S^1 can be considered both as initial point for solution u_1 and as a center of S^2 and hence as an origin of vector \vec{a} which we can choose as a tangent vector to S^1 in the x, y-plane. Thus we obtain an infinite set of solutions, each of u_2 -solutions associates with rotational sphere S^2 with its center on S^1 . This construction completely corresponds to the vortex in the form of the toroid.

REFERENCES

[1] Kenneth R. Shoulders. Patent Nr. 5018180 (USA) of 9. 12. 1991.

 ^[2] V.V. Gudkov. Algebraic and geometric properties of matrix solutions of nonlinear wave equations. Math. Phys., Anal. Geom., 6 (2), 2003, 125 – 137.