ACTA SOCIETATIS MATHEMATICAE LATVIENSIS Abstracts of the 5th Latvian Mathematical Conference, April 6–7, 2004, Daugavpils, Latvia © 2004 LMB

A CENTRAL ALGORITHM OF APPROXIMATION OF LINEAR FUNCTIONALS UNDER FUZZY INFORMATION

SVETLANA ASMUSS¹ AND ALEKSANDRS $\rm \check{S}OSTAKS^2$

Institute of Mathematics of Latvian Academy of Sciences and University of Latvia Akadēmijas laukums 1, LV-1524, Rīga, Latvia E-mail: ¹asmuss@lanet.lv, ²sostaks@latnet.lv

We consider the problem of approximation of a functional B defined on a set X and taking values in R by an information described by n real characteristics in the case when this information is fuzzy in the following sense:

We suppose that an element $x \in X$ is given by the data $z \in Ax$ of the *L*-fuzzy subset $Ax \in L^{\mathbb{R}^n}$, where *L* is a complete bounded lattice. Thus *A* is an "information" operator from *X* to $L^{\mathbb{R}^n}$.

By a method of solution of this problem we mean any functional φ defined on \mathbb{R}^n which allows us to get an approximation $\varphi(z)$ of the exact value Bx for each $x \in X$

$$x \in X \implies z \in Ax \in L^{R^n} \implies \varphi(z) \approx Bx \in R.$$

We analyse the error of approximation given by the function φ for an element $z \in \mathbb{R}^n$

$$e(\varphi, z) = \mathcal{S}up \{ |Bx - \varphi(z)| : x \in U_z \},\$$

where U_z is an *L*-fuzzy subset of X defined by

$$U_z(x) = Ax(z), \ x \in X,$$

and the supremum Sup of an L-fuzzy set of real numbers is defined as in [1].

Our aim is to describe the central algorithm φ^c (cf [2] in the crisp case) such that for every $z \in \mathbb{R}^n$ the value $\varphi^c(z)$ gives the centre of the *L*-fuzzy set $V_z \in L^R$ defined by

$$V_z = B(U_z).$$

REFERENCES

- S. Asmuss and A. Šostak. Extremal problems of approximation theory in fuzzy context. Fuzzy Sets and Systems, 105 (2), (1999), 249 – 257.
- [2] J.F. Traub and H. Woźniakowski. A general theory of optimal algorithms. Academic Press, New York London, 1980.