Categorical invariants of finite minimal majority algebras

Kalle Kaarli University of Tartu Tartu, Estonia

The algebras \mathbf{A} and \mathbf{B} are called *categorically equivalent* if there is an equivalence between categories Var \mathbf{A} and Var \mathbf{B} under which the algebras \mathbf{A} and \mathbf{B} correspond to each other. We denote by \mathbf{A}^+ the algebra obtained from an algebra \mathbf{A} by adding to its fundamental operations all nullary operations on A. We shall call algebras \mathbf{A} and \mathbf{B} *p*-categorically equivalent if \mathbf{A}^+ and \mathbf{B}^+ are categorically equivalent.

A property P is called a *categorical* (*p-categorical*) invariant for a class of algebras \mathcal{K} , if for any two categorically (p-categorically) equivalent algebras $\mathbf{A}, \mathbf{B} \in \mathcal{K}$, algebra \mathbf{A} has the property P iff so does \mathbf{B} .

We call an algebra *minimal* if it has no proper subalgebras. Obviously all algebras \mathbf{A}^+ are minimal. A *majority algebra* is one that admits a majority term. It follows from [1] that categorical invariants of finite majority algebras \mathbf{A} are determined by the structure $\mathbf{S}_2(\mathbf{A})$ of subalgebras of \mathbf{A}^2 . For the case with \mathbf{A} minimal and Var \mathbf{A} arithmetical, the structures $\mathbf{S}_2(\mathbf{A})$ where described in [2]. Later this result was generalized to arbitrary finite minimal algebras with majority term (not published yet). It turned out that in this case the structures $\mathbf{S}_2(\mathbf{A})$ ($\mathbf{S}_2(\mathbf{A}^+)$) are precisely finite, ordered, involutive monoids with zero, satisfying some natural distributivity and completeness conditions (finite, involutive, lattice ordered semirings). Using these results we can derive a number of categorical invariants of finite, minimal majority algebras and p-categorical invariants of finite majority algebras.

References

- C. Bergman, Categorical equivalence of algebras with majority term Algebra Universalis 40, 1998, 149–175.
- [2] K. Kaarli and L. Márki, A characterization of the inverse monoid of bi-congruences of certain algebras, *International J. Algebra and Computation* 6, 2009, 791–808.