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Abstract. We consider a second order scalar conservative differential equation who-
se potential function is a Morse function with a finite number of critical points and is
unbounded at infinity. We give an upper bound for the number of nonglobal nontri-
vial period annuli of the equation and prove that the upper bound obtained is sharp.
We use tree theory in our considerations.
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1 Introduction

In this paper, we consider a second order conservative differential equation

x′′ = −U ′(x), (1.1)

where U is a twice continuously differentiable function on the real line. The
Equation (1.1) is equivalent to the planar system{

x′ = y,
y′ = −U ′(x).

(1.2)

Following a mechanical interpretation of (1.1), see, for instance, [1], the function
U is called a potential energy function of (1.1).

�
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Definition 1. Suppose U ∈ C2(R,R). A point x0 ∈ R is a critical point of U
if U ′(x0) = 0. A critical point x0 of U is nondegenerate, see [14], if U ′′(x0) 6= 0.
The function U is said to be a Morse function, see [14], if all its critical points
are nondegenerate.

In the present article, we consider functions U satisfying the following con-
ditions.

(A) The function U is a Morse function with a finite number of critical points
ξ1, . . . , ξn.

(B) The function U satisfies one of the following conditions:

(B1) n ≥ 3 and lim
x→±∞

U(x) = +∞,

(B2) n ≥ 4, lim
x→−∞

U(x) = −∞, and lim
x→+∞

U(x) = +∞,

(B3) n ≥ 4, lim
x→−∞

U(x) = +∞, and lim
x→+∞

U(x) = −∞,

(B4) n ≥ 5 and lim
x→±∞

U(x) = −∞.

In what follows, we refer function U satisfying (A) and (B) as a Morse
potential.

If U is a Morse potential, then ξi (1 ≤ i ≤ n) are strict local minimum or
maximum points for U . In what follows, we will assume that ξ1 < · · · < ξn. In
view of (B), a Morse potential U has at least two strict local minimum points
and at least one strict local maximum point; we denote by nmin and nmax
the number of local minimum and maximum points of U , respectively. Then,
nmin + nmax = n. The points (ξi, 0), i ∈ {1, . . . , n}, are singular points of
the planar system (1.2): a point (ξi, 0) is a centre of (1.2) if U ′′(ξi) > 0 and
a saddle of (1.2) if U ′′(ξi) < 0. The singular points of (1.2) form a sequence
(ξ1, 0), . . . , (ξn, 0) of alternating centres and saddles on the horizontal axis of
the phase plane of (1.2).

We are looking for regions of the phase plane of (1.2) filled with nontrivial
periodic orbits of (1.2). By region we mean a nonempty open connected subset
of R2.

Definition 2. A maximal region covered with nontrivial periodic orbits of
(1.2) is called a period annulus for (1.1). Maximality means that a period
annulus is not contained in any other region covered with nontrivial periodic
orbits of (1.2).

More generally, period annuli are similarly defined for autonomous planar
systems as well. Some authors classify period annuli by the number of singular
points enclosed by period annuli.

Definition 3. ( [2, 8, 17]) Let (ξ, 0) be a singular point of (1.2) and let (ξ, 0)
be a centre. The period annulus for (1.1) surrounding (ξ, 0) is called a trivial
period annulus or a central region for (1.1). A period annulus for (1.1) enclosing
more than one singular point of (1.2) is called a nontrivial period annulus for
(1.1).
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Definition 4. ( [22]) A period annulus for (1.1) enclosing all singular points
of (1.2) is called a global period annulus for (1.1). Otherwise, it is called a
nonglobal period annulus for (1.1).

If U is a Morse potential, then U has at least three critical points and thus
a trivial period annulus for (1.1) is a nonglobal period annulus for (1.1). For
the Equation (1.1) with a Morse potential U , by the phase plane analysis of
(1.2), a global period annulus exists if and only if (B1) is fulfilled; moreover, it
is unique.

The number of trivial, nontrivial, global, nonglobal, and nonglobal nontri-
vial period annuli for (1.1) are denoted by NT , NNT , NG, NNG, and NNG,NT ,
respectively. By N we denote the number of all period annuli for (1.1). In view
of Definitions 3 and 4,

N = NG +NNG,NT +NT , NT = nmin, NNG,NT = NNG −NT . (1.3)

In this paper, we are interested in finding a sharp upper bound for NNG,NT .
We mention some references concerning period annuli for autonomous pla-

nar systems, in particular, for the systems (1.2). The period functions as-
sociated with central regions have been extensively studied, for instance, in
[10, 11, 16, 21]. Planar systems in which period annuli enclose limit cycles, or
limit cycles enclose period annuli are studied, for instance, in [2, 5, 6, 17, 22].
In [8, 9], the authors study the maximum number of nontrivial period annuli
for a conservative equation with a polynomial potential; the results obtained
in [8, 9] are discussed in more detail at the end of this section.

Let us recall some concepts from the tree theory, see, for instance, [18,19,20],
that will be used in our article. A tree is a connected acyclic graph. A rooted
tree is a tree that has one node designated as a root. Let T be a rooted tree
with at least two nodes and let u0 be the root of T . Let u be a node of T that
is different from u0. There exists exactly one path in T between u0 and u, and
thus there exists a unique node v of T such that the path contains the edge
{v, u}. The node v is called a parent node of u and u is called a child node of
v. In a rooted tree, a leaf node is a node with no child nodes. A binary tree is
a rooted tree in which all nodes have at most two child nodes.

The present article is organized as follows. In Section 2, we define critical
segments for a Morse potential U and explore their properties. In Section 3,
we introduce the rooted tree G(U) associated with a Morse potential U in such
a way that non-root nodes of G(U) are critical segments for U . We show that
the leaf nodes and the non-root non-leaf nodes of G(U) represent the trivial
and the nonglobal nontrivial period annuli for (1.1), respectively. Let α be
a real number. Then, bαc := max{k ∈ Z : k ≤ α} is the floor of α and
dαe := min{k ∈ Z : k ≥ α} is the ceiling of α. In Section 4, we prove the first
main theorem of our article.

Theorem 1. Let U be a Morse potential with n critical points. The number of
nonglobal nontrivial period annuli for (1.1) satisfies the following inequality:

NNG,NT ≤
⌊n

2

⌋
− 1. (1.4)
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In Section 5, at first, we prove that, for a Morse potential U , providing the
inequality (1.4) becomes equality, the associated rooted tree G(U) is a binary
tree with additional structure. Then, we prove the second main theorem of our
article.

Theorem 2. The following statements are valid.

(1) For every odd integer n (n ≥ 3), there is a Morse potential U with n
critical points such that U satisfies (B1) and ensures equality in (1.4).

(2) For every even integer n (n ≥ 4), there is a Morse potential U with n
critical points such that U satisfies (B2) and ensures equality in (1.4).

(3) For every even integer n (n ≥ 4), there is a Morse potential U with n
critical points such that U satisfies (B3) and ensures equality in (1.4).

(4) For every odd integer n (n ≥ 5), there is a Morse potential U with n
critical points such that U satisfies (B4) and ensures equality in (1.4).

The main theorems in our article provide a wide generalization of the re-
sults obtained in [8,9]. In the last two references, the authors explore the Equa-
tion (1.1) for a real polynomial U of degree n+1 (n is odd and n ≥ 5) such that
the function U has n nondegenerate critical points, and the leading coefficient
of U is negative. Hence, U satisfies (A) and (B4) and thus nmax = nmin+1. It
follows from Theorem 1 that NNG,NT ≤

⌊
n
2

⌋
− 1 =

⌊
2nmax−1

2

⌋
− 1 = nmax− 2.

The condition (B4) implies NNG,NT = NNT . Hence, we obtain the inequality
NNT ≤ nmax − 2, which was proved in [9]. In [8, 9], the authors proved the
sharpness of the last inequality.

It is worth mentioning that graph theory is often used to study Morse func-
tions, for example, Reeb graphs are important for exploring Morse functions
over manifolds, see, for instance, [4, 7, 12, 13] and references therein. Reeb
graphs are used also in computer graphics, see [4]. In [12], conditions are in-
dicated under which Reeb graph is a tree. In [7, 13], the authors provide the
upper bound for the number of cycles in Reeb graphs and prove that the upper
bound is sharp. (Compare with the main theorems in this article.) In our
opinion, this article contributes to the application of graph theory to the study
of Morse functions and differential equations.

2 Critical segments for Morse potentials

Let U be a Morse potential. For every c ∈ R, by Rolle’s theorem, the preimage
U−1(c) := {x ∈ R : U(x) = c} of the point c under U is a finite set.

Definition 5. Let a and b be real numbers. Suppose a < b and U(a) = U(b) =:
M . Let a or b (may be both) be a local maximum point of U . The closed line
segment E =

[
(a,M), (b,M)

]
⊂ R2 is a critical segment for U , shortly CS, if

U(x) < M for every x ∈ (a, b). The value M is an energy level of E . Let ξ be
a local maximum point of U . We say the point

(
ξ, U(ξ)

)
generates a CS E for

U if
(
ξ, U(ξ)

)
∈ E .

Math. Model. Anal., 26(4):612–630, 2021.
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Definition 6. Let E1 =
[
(a1,M1), (b1,M1)

]
and E2 =

[
(a2,M2), (b2,M2)

]
be

two CS for U . We say E1 is a parent CS of E2 and E2 is a child CS of E1 if
[a2, b2] ⊂ (a1, b1), the inequality M2 < M1 holds, and U(η) ≤ M2 for every
local maximum point η of U in the interval (a1, b1).

Remark 1. Let E0 =
[
(a0,M0), (b0,M0)

]
, E1 =

[
(a1,M1), (b1,M1)

]
, and E2 =[

(a2,M2), (b2,M2)
]

be three CS for U . Suppose that E0 is a parent CS for E1

and E1 is a parent CS of E2, that is, E0 is a grandparent CS of E2. Then,
[a2, b2] ⊂ [a1, b1] ⊂ (a0, b0) and M2 < M1 < M0. Since E1 is a CS for U , we see
that a1 or b1 (may be both) is a local maximum point of U and U(a1) = U(b1) =
M1. Assume that a1 is a local maximum point of U . Hence, there exists a local
maximum point a1 of U in the interval (a0, b0) such that U(a1) > M2 and thus
the grandparent CS E0 of E2 is not a parent CS of E2.

Figure 1. A Morse potential U has seven critical points and satisfies (B4). The function
U has four CS E1 = [(a1,M1), (b1,M1)], E2 = [(a2,M2), (b2,M2)], E3 = [(b2,M2), (c2,M2)],

and E4 = [(c2,M2), (d2,M2)], which are nodes of the associated rooted tree G(U).

Example 1. In Figure 1, the points a0, b1, b2, and c2 are local maximum points
of U . The point P1 =

(
a0, U(a0)

)
does not generate any CS for U , the point

P2 =
(
b1, U(b1)

)
generates exactly one CS E1 for U , the point P3 =

(
b2, U(b2)

)
generates exactly two CS E2 and E3 for U , and the point P4 =

(
c2, U(c2)

)
generates exactly two CS E3 and E4 for U . In the same figure, E1 is a parent
CS of E2, E3, and E4 and the last three CS are child CS of E1.

In the next proposition, we collect properties of CS.

Proposition 1. Let U be a Morse potential.

(a) Let ξ be a local maximum point of U . The point
(
ξ, U(ξ)

)
generates at

most two CS for U . Any CS for U is generated by either one or both of
its endpoints.

(b) The function U has at least two CS and the number of CS for U is finite.

(c) A CS E1 =
[
(a1,M1), (b1,M1)

]
for U has a child CS if and only if the

interval (a1, b1) contains at least one local maximum point of U . If a
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CS E1 has a child CS, then E1 has at least two child CS. A union of
all child CS for E1 is a closed line segment

[
(a2,M2), (b2,M2)

]
, where

[a2, b2] ⊂ (a1, b1).

(d) A CS E2 =
[
(a2,M2), (b2,M2)

]
for U has a parent CS if and only if there

exists a local maximum M1 of U such that M1 > M2 and both the sets
U−1(M1) ∩ (−∞, a2) and U−1(M1) ∩ (b2,+∞) are nonempty.

(e) Every CS for U has at most one parent CS.

(f) Let E1 =
[
(a1,M1), (b1,M1)

]
and E2 =

[
(a2,M2), (b2,M2)

]
be two differ-

ent CS for U such that M2 ≤M1. Then, either the intervals (a1, b1) and
(a2, b2) do not intersect or [a2, b2] ⊂ (a1, b1).

Proof. (a) Let ξ be a local maximum point of U and let M stand for U(ξ). Let
E1 and E2 be two different CS for U with the same energy level M . It follows
from Definition 5 that either E1 and E2 do not intersect or the intersection of
E1 and E2 is a singleton set consisting of the common endpoint of E1 and E2.
Consequently, the point

(
ξ, U(ξ)

)
can belong to at most two CS for U with

the energy level M . In view of Definition 5, the point
(
ξ, U(ξ)

)
generates at

most two CS for U . If E =
[
(a,M), (b,M)

]
is a CS for U , then either the point

(a,M) generates E and the point (b,M) does not generate E , the point (a,M)
does not generate E and the point (b,M) generates E , or both the points (a,M)
and (b,M) generate E .

(b) It follows from (A) and (B) that there exist two local minimum points
η1 and η2 of U such that η1 < η2 and the interval (η1, η2) does not contain local
minimum points of U . Then, there exists a unique local maximum point ξ of U
in the interval (η1, η2). Let M stand for U(ξ). We provide the proof only for the
case when (B2) is valid. Since lim

x→−∞
U(x) = −∞, we conclude that the interval

(−∞, ξ) contains local maximum points of U . Let c1 be the local maximum
point of U closest to ξ on the left. Consider M1 := min

{
U(c1),M

}
. By the

intermediate value theorem, there exist unique elements a1 and b1 of U−1(M1)
in the intervals [c1, η1) and (η1, ξ], respectively. Then, E1 =

[
(a1,M1), (b1,M1)

]
is a CS for U . Since lim

x→+∞
U(x) = +∞, we see that the set U−1(M)∩ (ξ,+∞)

is nonempty. Let b2 be the element of U−1(M) closest to ξ on the right. Then,
E2 =

[
(ξ,M), (b2,M)

]
is a CS for U . Since a1 < b1 ≤ ξ < b2, we see that

E1 6= E2. Hence, U has at least two CS. It follows from (a) that every local
local maximum point of U generates at most two CS for U . Since U has a finite
number of local maximum points, we conclude that the number of CS for U is
finite.

(c) If a CS E1 =
[
(a1,M1), (b1,M1)

]
has a child CS E2 =

[
(a2,M2), (b2,M2)

]
,

then a2 or b2 is a local maximum point of U in the interval (a1, b1).
Let E1 =

[
(a1,M1), (b1,M1)

]
be a CS for U . Suppose that U has a local

maximum point in the interval (a1, b1). Consider all local maximum points
η1, . . . , ηr (r≥1) in the interval (a1, b1) and find M2= max

{
U(η1), . . . , U(ηr)

}
.

Then, U(ηp) ≤M2 for every p ∈ {1, . . . , r}. Since E1 =
[
(a1,M1), (b1,M1)

]
is a

CS, we see that M2 < M1. Consider all local maximum points ci (1 ≤ i ≤ m)
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of U , where 1 ≤ m ≤ r, such that ci ∈ (a1, b1) and U(ci) = M2 for every
i ∈ {1, . . . ,m}. Find cmin := min

1≤i≤m
{ci} and cmax := max

1≤i≤m
{ci}. By the inter-

mediate value theorem, there exist unique elements c0 and cm+1 of U−1(M2)
in the intervals (a1, cmin) and (cmax, b1), respectively. If m = 1, then cmin =
c1 = cmax and hence E1 has exactly two child CS E ′0 =

[
(c0,M2), (c1,M2)

]
and E ′1 =

[
(c1,M2), (c2,M2)

]
. Suppose m ≥ 2. Without loss of genera-

lity, we can assume that c1 < · · · < cm. Then, E ′0 =
[
(c0,M2), (c1,M2)

]
,

E ′1 =
[
(c1,M2), (c2,M2)

]
, . . . , E ′m =

[
(cm,M2), (cm+1,M2)

]
is a list of all child

CS of E1.
If a CS E1 has a child CS, then U has a local maximum point in the interval

(a1, b1). It follows from the above considerations that E1 has at least two child
CS and a union of CS E ′i (0 ≤ i ≤ m) is equal to the closed line segment[
(a2,M2), (b2,M2)

]
, where a2 = c0 and b2 = cm+1, and [a2, b2] ⊂ (a1, b1).

(d) The proof is similar to the one of (c).
(e) Let E2 =

[
(a2,M2), (b2,M2)

]
be a CS for U . Suppose that E ′1 =[

(a′1,M
′
1), (b′1,M

′
1)
]

and E ′′1 =
[
(a′′1 ,M

′′
1 ), (b′′1 ,M

′′
1 )
]

are parent CS of E2. Then,
the following inequalities hold: M2 < M ′1, M2 < M ′′1 , a′1 < a2 < b2 < b′1, and
a′′1 < a2 < b2 < b′′1 . Let us prove that M ′1 = M ′′1 . Suppose to the contrary that
M ′1 6= M ′′1 . Without loss of generality, we can assume that M ′1 < M ′′1 . Since E ′1
is a CS, we conclude that a′1 or b′1 is a local maximum point of U . Suppose that
a′1 is a local maximum point of U . If a′′1 < a′1, then the interval (a′′1 , b

′′
1) contains

a local maximum point a′1 of U and U(a′1) = M ′1 > M2, which contradicts to
E ′′1 is a parent CS of E2. If a′′1 = a′1, then M ′1 = U(a′1) = U(a′′1) = M ′′1 , which
contradicts to the hypothesis. If a′′1 > a′1, then the interval (a′1, b

′
1) contains a

point a′′1 such that U(a′′1) = M ′′1 > M ′1, which contradicts to E ′1 is a CS. The
case when b′1 is a local maximum point of U is considered similarly. Therefore,
M ′1 = M ′′1 =: M1. Let us prove that a′1 = a′′1 and b′1 = b′′1 . Suppose to the con-
trary that a′1 6= a′′1 or b′1 6= b′′1 . Suppose a′1 6= a′′1 . If a′1 < a′′1 , then a′′1 ∈ (a′1, b

′
1)

and U(a′′1) = M1, which contradicts to E ′1 is a CS. If a′1 > a′′1 , then a′1 ∈ (a′′1 , b
′′
1)

and U(a′1) = M1, which contradicts to E ′′1 is a CS. The case b′1 6= b′′1 also leads
to a contradiction. Thereby, a′1 = a′′1 and b′1 = b′′1 and thus E ′1 = E ′′1 .

(f) The proof follows from Definition 5 and the proof of (a). ut

3 Rooted trees associated with Morse potentials

Let U be a Morse potential. It follows from Proposition 1(b) that U has at least
two CS and the number of CS for U is finite. Let θ be a real number and let M0

be a real number greater than the maximum energy level of all CS for U . Let
V (U) be a set of nodes consisting of all CS for U and the point O := (θ,M0).
Hence, the set V (U) is finite and it contains at least three elements. In view of
Proposition 1(e), for an arbitrary CS E for U , either E has a unique parent CS
or E has no parent CS. Let E(U) be a set of edges consisting of all pairs {E , E ′}
if E has a parent CS E ′ and all pairs {E ,O} if E has no parent CS. Hence, if u
and v are CS for U and {u, v} ∈ E(U), then either u is a parent CS of v or v
is a parent CS of u.
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Definition 7. Let U be a Morse potential. The graph G(U) :=
(
V (U), E(U)

)
is said to be the associated graph with U .

Denote by NCS the number of critical segments for U . We conclude that
the graph G(U) has NCS + 1 nodes and NCS edges. We designate the node O
as a root of G(U). Hence, G(U) is a rooted graph with the root O.

Proposition 2. For a Morse potential U , the graph G(U) is a rooted tree.

Proof. Let us prove that G(U) does not contain cycles. Suppose to the con-
trary that G(U) contains a cycle C = (u1, u2, . . . , uk, uk+1), where k ≥ 3 and
uk+1 = u1. Then, the nodes u1, u2, . . . , uk are different and the cycle C has
the edges {u1, u2}, {u2, u3}, . . . , {uk, uk+1}.

Suppose O 6∈ {u1, . . . , uk}; then, the nodes u1, . . . , uk are CS for U . For
every j ∈ {1, . . . , k}, let Mj be an energy level for uj . Since {u1, u2} ∈ E(U),
then either u1 is a parent CS of u2 or u2 is a parent CS of u1. Without loss
of generality, we can assume that u1 is a parent CS of u2. Hence, M1 > M2.
For the edge {u2, u3}, it follows from Proposition 1(e) that u2 is a parent CS
of u3 and thus M2 > M3. Continuing, for the edge {uk, uk+1}, it follows from
Proposition 1(e) that uk is a parent CS of uk+1. Since uk+1 = u1, we see
that Mk > M1. Therefore, M1 > M2 > · · · > Mk > M1 which leads to a
contradiction.

Suppose O ∈ {u1, u2, . . . , uk}. Without loss of generality, we can assume
that O = u1. Then, the cycle C contains the edge {O, u2} and thus u2 has
no parent CS. For the edge {u2, u3}, it follows from Proposition 1(e) that
u2 is a parent CS of u3. Continuing, for the edge {uk−1, uk}, it follows
from Proposition 1(e) that uk−1 is a parent CS of uk. Finally, for the edge
{uk, uk+1}={uk,O}, uk has no parent CS. The contradiction obtained proves
that G(U) does not contain cycles. Since G(U) has NCS + 1 nodes and NCS
edges, it follows from [20, Theorem 2.4.1.] that G(U) is a tree. ut

In Figure 1, a Morse potential U and the associated rooted tree G(U) are
depicted. It follows from Proposition 1, that the number NCS of CS for (1.1)
is finite and NCS ≥ 2. To every CS E for U , we associate a period annulus
A(E) as follows.

Suppose a CS E1 =
[
(a1,M1), (b1,M1)

]
has a child CS. It follows from

Proposition 1(c) that E1 has at least two child CS and a union of all child CS for
E1 is a closed line segment

[
(a2,M2), (b2,M2)

]
, where [a2, b2] ⊂ (a1, b1). Taking

into account [1], solutions of (1.2) that start at the points (α, 0), where α ∈
(a1, a2), or, equivalently solutions of (1.2) that start at the points (β, 0), where
β ∈ (b2, b1), are periodic and form the nonglobal nontrivial period annulus
A(E1) of (1.1) associated with E1.

Suppose a CS E1 =
[
(a1,M1), (b1,M1)

]
has no child CS. In view of Propo-

sition 1(c), the interval (a1, b1) contains a unique critical point ξ of U , which
is a local minimum point. Hence, (ξ, 0) is a centre of (1.2). Taking into ac-
count [1], solutions of (1.2) that start at the points (α, 0), where α ∈ (a1, ξ), or,
equivalently solutions of (1.2) that start at the points (β, 0), where β ∈ (ξ, b1),
are periodic and form the trivial period annulus A(E1) of (1.1) associated with
E1.
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In view of (B), a trivial period annulus of (1.1) is a nonglobal period annulus
of (1.1). Thereby, the correspondence E 7→ A(E) defines a mapping A from
the set C of all CS for U to the set PNG of all nonglobal period annuli for
(1.1). Using the phase plane analysis of the planar system (1.2) and taking
into account Proposition 1, we deduce that (I′) the mapping A : C 7→ PNG is
one-to-one and thus

NCS = NNG; (3.1)

(II′) under the mapping A : C 7→ PNG, the CS for U that have child CS are
in one-to-one correspondence with the nonglobal nontrivial period annuli for
(1.1); (III′) under the mapping A : C 7→ PNG, the CS for U that have no child
CS are in one-to-one correspondence with the trivial period annuli for (1.1);
therefore, combining (1.3) and (3.1), we obtain

NNG,NT = NCS − nmin. (3.2)

Taking into account Propositions 1 and 2 and the assertions (I′)–(III′), we
conclude that the following proposition holds.

Proposition 3. Let U be a Morse potential. The following statements are
valid:

(I) the nonglobal period annuli for (1.1) are in one-to-one correspondence
with the non-root nodes of G(U);

(II) the nonglobal nontrivial period annuli for (1.1) are in one-to-one corres-
pondence with the non-root non-leaf nodes of G(U);

(III) the trivial period annuli for (1.1) are in one-to-one correspondence with
the leaf nodes of G(U).

4 Proof of the first main theorem

Let X and Y be two nonempty sets. Denote by P(Y ) the power set of Y . A
multivalued mapping ϕ from the set X to the set Y is a mapping from the set X
to the set P(Y ) such that ϕ(x) is a nonempty subset of Y for every x ∈ X, see
[3]. The multivalued mapping ϕ from X to Y is denoted by ϕ : X ⇒ Y . Let B
be a nonempty subset of Y . Consider the set ϕ−(B) :=

{
x ∈ X : ϕ(x)∩B 6= ∅

}
,

see [3, p. 24]. If B is a singleton set, say B = {b}, then ϕ−(B) is denoted by
ϕ−(b); hence ϕ−(b) =

{
x ∈ X : b ∈ ϕ(x)

}
. The cardinality of a finite set

S is denoted by |S|. Assume that X and Y are nonempty finite sets and
Y = {P1, . . . , Pq}, where q ≥ 1. For a multivalued mapping ϕ : X ⇒ Y ,

X = ϕ−(P1) ∪ · · · ∪ ϕ−(Pq). (4.1)

Suppose that a Morse potential U has local maximum points ηi (1 ≤ i ≤
nmax). Consider the points Pi :=

(
ηi, U(ηi)

)
(1 ≤ i ≤ nmax) and the set

Y := {P1, . . . , Pnmax
}. In accordance with Proposition 1(b), the function U

has at least two CS and the number of CS for U is finite. Consider the set
C = {E1, . . . , ENCS

} of all CS for U . Let us define a multivalued mapping
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ϕ : C ⇒ Y as follows: for every j ∈ {1, . . . , NCS}, the value ϕ(Ej) is a subset
of Y consisting of the points that generate Ej . On account of Proposition 1(a),
the cardinality

∣∣ϕ(Ej)
∣∣ ∈ {1, 2} for every j ∈ {1, . . . , NCS}. For every i ∈

{1, . . . , nmax}, the set ϕ−(Pi) consists of the CS for U generated by the point
Pi. Then, ki :=

∣∣ϕ−(Pi)
∣∣ (1 ≤ i ≤ nmax) is the number of the CS for U

generated by the point Pi. It follows from Proposition 1(a) that ki ∈ {0, 1, 2}
for every i ∈ {1, . . . , nmax}. Let J1, . . . , Jt (t ≥ 1) be a partition of the set
{1, . . . , nmax}, where among the sets J1, . . . , Jt (t ≥ 1) there may be empty
sets; see [15, p. 130]. Since |C| = NCS , it follows from (4.1) that

NCS =
∣∣ϕ−(P1) ∪ · · · ∪ ϕ−(Pnmax)

∣∣ ≤ ∣∣∣∣∣ ⋃
s1∈J1

ϕ−(Ps1)

∣∣∣∣∣+ · · ·+

∣∣∣∣∣ ⋃
st∈Jt

ϕ−(Pst)

∣∣∣∣∣ .
(4.2)

Let us interpret the summands in the right-hand side of (4.2). For example, let

us consider the summand S1 :=

∣∣∣∣∣ ⋃
s1∈J1

ϕ−(Ps1)

∣∣∣∣∣. If J1 6= ∅, then the points Ps1

(s1 ∈ J1) together generate exactly S1 CS for U and S1 ≤
∑
s1∈J1

ks1 ≤ 2|J1|. If

J1 = ∅, then
⋃
s1∈J1

ϕ−(Ps1) = ∅ and thus the inequality S1 ≤ 2|J1| is valid also.

The other summands in the right-hand side of (4.2) are interpreted similarly.

Example 2. Let us consider the Morse potential U depicted in Figure 1. Then,
C = {E1, E2, E3, E4} and Y = {P1, P2, P3, P4}, where P1 =

(
a0, U(a0)

)
, P2 =(

b1, U(b1)
)
, P3 =

(
b2, U(b2)

)
, and P4 =

(
c2, U(c2)

)
. For the multivalued map-

ping ϕ : C ⇒ Y defined above, we have ϕ(E1) = {P2}, ϕ(E2) = {P3}, ϕ(E3) =
{P3, P4}, ϕ(E4) = {P4} and ϕ−(P1) = ∅, ϕ−(P2) = {E1}, ϕ−(P3) = {E2, E3},
ϕ−(P4) = {E3, E4}. Consider the partition J1 := {1, 2}, J2 := {3, 4} of the set
{1, 2, 3, 4}. Since ϕ−(P1)∪ϕ−(P2) = {E1} and ϕ−(P3)∪ϕ−(P4) = {E2, E3, E4},
we see that the points P1 and P2 together generate exactly one CS for U and
the points P3 and P4 together generate exactly three CS for U .

Let us prove Theorem 1.

Proof. Let U be a Morse potential.
Case 1. Suppose that (B1) holds; then, n ≥ 3. It follows from lim

x→±∞
U(x) =

+∞ that n = 2m + 1 (m ≥ 1), nmin = m + 1, and nmax = m. The local
maximum points of U are ξ2i (1 ≤ i ≤ m). Consider the set Y = {P1, . . . , Pm},
where Pi :=

(
ξ2i, U(ξ2i)

)
(1 ≤ i ≤ m), and the partition Ji := {i} (1 ≤ i ≤ m)

of the set {1, . . . ,m}. Since
∣∣ϕ−(Pi)

∣∣ ≤ 2 (1 ≤ i ≤ m), it follows from (4.2)
that NCS ≤ 2m. Taking into account (3.2), we obtain

NNG,NT = NCS − nmin ≤ 2m− (m+ 1) = m− 1 = bn/2c − 1.

Case 2. Suppose that (B2) holds; then, n ≥ 4. It follows from lim
x→∓∞

U(x) =

∓∞ that n = 2m (m ≥ 2), nmin = m, and nmax = m. The local maximum
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points of U are ξ2i−1 (1 ≤ i ≤ m). Consider the set Y = {P1, . . . , Pm}, where
Pi :=

(
ξ2i−1, U(ξ2i−1)

)
(1 ≤ i ≤ m), and the partition Ji := {i} (1 ≤ i ≤ m) of

the set {1, . . . ,m}. Since
∣∣ϕ−(P1)

∣∣ = 1,
∣∣ϕ−(Ps)

∣∣ ≤ 2 (2 ≤ s ≤ m), it follows
from (4.2) that NCS ≤ 1 + 2(m− 1) = 2m− 1. In view of (3.2), we obtain

NNG,NT = NCS − nmin ≤ (2m− 1)−m = m− 1 = bn/2c − 1.

Case 3. Suppose that (B3) holds. Acting similarly as in Case 2, we obtain
NNG,NT ≤

⌊
n
2

⌋
− 1.

Case 4. Suppose that (B4) holds; then, n ≥ 5. It follows from lim
x→±∞

U(x) =

−∞ that n = 2m + 1 (m ≥ 2), nmin = m, and nmax = m + 1. The local
maximum points of U are ξ2j−1 (1 ≤ j ≤ m + 1). Consider the set Y =
{P1, . . . , Pm+1}, where Pj :=

(
ξ2j−1, U(ξ2j−1)

)
(1 ≤ j ≤ m + 1). In view of

lim
x→±∞

U(x) = −∞, we conclude that U has a global maximum max
x∈R

U(x) =: M .

Hence, M = max
j∈K

{
U(ξ2j−1)

}
, where K := {1, 2, . . . ,m + 1}. Suppose that h

is the maximum number of ξ2j−1, j ∈ K, such that U(ξ2j−1) = M . Then,
h ∈ {1, . . . ,m + 1} and there is a unique h-element subset H of K such that
U(ξs) = M for every s ∈ H.

Suppose h = 1. If either H = {1} or H = {m + 1}, then consider
the partition J1 := {1,m + 1}, J2 := K \ {1,m + 1} of the set K. Since∣∣∣∣∣ ⋃
s1∈J1

ϕ−(Ps1)

∣∣∣∣∣ = 1 and

∣∣∣∣∣ ⋃
s2∈J2

ϕ−(Ps2)

∣∣∣∣∣ ≤ 2|J2| = 2(m − 1), it follows from

(4.2) that NCS ≤ 1 + 2(m− 1) = 2m− 1. In view of (3.2), we obtain

NNG,NT = NCS − nmin ≤ (2m− 1)−m = m− 1 = bn/2c − 1.

If H = {j0}, where j0 ∈ {2, . . . ,m}, then consider the partition J1 := {j0},

J2 := {1,m+1}, J3 := K\{1, j0,m+1} of the set K. Since

∣∣∣∣∣ ⋃
s1∈J1

ϕ−(Ps1)

∣∣∣∣∣ = 0,∣∣∣∣∣ ⋃
s2∈J2

ϕ−(Ps2)

∣∣∣∣∣ = 2, and

∣∣∣∣∣ ⋃
s3∈J3

ϕ−(Ps3)

∣∣∣∣∣ ≤ 2|J3| = 2(m − 2), it follows from

(4.2) that NCS ≤ 0 + 2 + 2(m − 2) = 2m − 2 < 2m − 1. In view of (3.2), we
obtain

NNG,NT = NCS − nmin < (2m− 1)−m = m− 1 = bn/2c − 1.

Suppose h ∈ {2, . . . ,m+1}. Consider the partition J1 := H, J2 := K \H of

the setK. Since

∣∣∣∣∣ ⋃
s1∈J1

ϕ−(Ps1)

∣∣∣∣∣ = h−1 and

∣∣∣∣∣ ⋃
s2∈J2

ϕ−(Ps2)

∣∣∣∣∣ ≤ 2|J2| = 2(m+1−

h), it follows from (4.2) that NCS ≤ (h−1)+2(m+1−h) = 2m−h+1 ≤ 2m−1.
In view of (3.2), we obtain

NNG,NT = NCS − nmin ≤ (2m− 1)−m = m− 1 = bn/2c − 1.

The proof is complete. ut
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Corollary 1. Let U be a Morse potential with n critical points. Then, the
number of all period annuli for (1.1) satisfies

N ≤

 n, if (B1) is valid;
n− 1, if either (B2) or (B3) is valid;
n− 2, if (B4) is valid.

(4.3)

Proof. It follows from (1.3) and Theorem 1 that

N ≤ NG + (bn/2c − 1) + nmin. (4.4)

By the phase plane analysis of (1.2), we have

NG =

{
1, if (B1) is valid;

0, if either (B2), (B3), or (B4) is valid.
(4.5)

In view of (B),

nmin =

{
dn/2e , if either (B1), (B2), or (B3) is valid;

dn/2e − 1, if (B4) is valid.
(4.6)

Since bn/2c+ dn/2e = n for every integer n, see [19, Theorem 2.1.5], it follows
from (4.4)–(4.6) that (4.3) is fulfilled. ut

5 Proof of the second main theorem

In a rooted tree, the depth of a node is the length of the unique path connecting
the node and the root, see [18, p. 17]. The depth of a rooted tree T is the
maximum depth of a node in T , see [18, p. 17]; the depth of T is denoted by
depth(T ). For a node u of a rooted tree, the number of child nodes for u is
denoted by children(u), see [18, p. 18]. If a rooted tree T has k nodes u1, . . . , uk,
then, see [18, Lemma 1.44],

children(u1) + · · ·+ children(uk) = k − 1. (5.1)

In the next proposition, we will indicate the necessary conditions for the
Morse potential to ensure equality in (1.4).

Proposition 4. If a Morse potential U with n critical points provides the in-
equality (1.4) becomes equality, then

(1) G(U) is a binary tree with k nodes,

k =

{
n, if either (B1), (B2), or (B3) is valid,

n− 1, if (B4) is valid;
(5.2)

(2) the number of non-root non-leaf nodes in G(U) is bn/2c − 1;

(3) every non-root non-leaf node in G(U) has two child nodes;
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(4) the number of child nodes of the root O of G(U) is

children(O) =

{
2, if (B1) is valid,
1, if either (B2), (B3), or (B4) is valid;

(5.3)

(5) the equality bk/2c = bn/2c holds, where k is defined by (5.2).

Proof. Let U be a Morse potential with n critical points. It follows from
Proposition 2 that G(U) is a rooted tree. Assume NNG,NT =

⌊
n
2

⌋
− 1. Let s

stand for
⌊
n
2

⌋
− 1. In view of Proposition 3, the number of non-root non-leaf

nodes in G(U) is s and the number of leaf nodes in G(U) is nmin.
Suppose n = 3; then, s = 0. Since n = 3, it follows from (B) that (B1) holds

and thus lim
x→±∞

U(x) = +∞. Hence, the rooted tree G(U) has three nodes:

the root and two leaf nodes. Therefore, the statements (1)–(5) are fulfilled.
Suppose n ≥ 4; then, s ≥ 1. Let u1, . . . , us be non-root non-leaf nodes of

G(U) and kj := children(uj) (1 ≤ j ≤ s). Taking into account Proposition 1(c),
every non-root non-leaf node of G(U) has at least two child nodes. Hence,
kj ≥ 2 (1 ≤ j ≤ s). Let ρ stand for children(O). Then, ρ ≥ 1. Assume that
G(U) has k nodes. By (5.1), we obtain

ρ+ k1 + · · ·+ ks = k − 1. (5.4)

Since k1 + · · ·+ ks ≥ 2s, it follows from (5.4) that

ρ ≤ k − 1− 2s. (5.5)

Suppose that (B1) holds; then, n = 2m + 1 (m ≥ 2), nmin = m + 1, and
nmax = m. In view of lim

x→±∞
U(x) = +∞, we have ρ ≥ 2. Since G(U) has

s =
⌊
n
2

⌋
− 1 = m − 1 non-root non-leaf nodes and m + 1 leaf nodes, we have

k = 1 + (m− 1) + (m+ 1) = n. In accordance with (5.5), we obtain ρ ≤ 2 and
thus ρ = 2. It follows from (5.4) that

k1 + · · ·+ ks = 2s. (5.6)

Suppose that either (B2) or (B3) hold; then, n = 2m (m ≥ 2), nmin = m,
and nmax = m. Since G(U) has s =

⌊
n
2

⌋
− 1 = m− 1 non-root non-leaf nodes

and m leaf nodes, we have k = 1 + (m− 1) +m = n. In accordance with (5.5),
we obtain ρ ≤ 1 and thus ρ = 1. Then, (5.6) is fulfilled.

Suppose that (B4) holds; then n = 2m + 1 (m ≥ 2), nmin = m, and
nmax = m+ 1. Since G(U) has s =

⌊
n
2

⌋
− 1 = m− 1 non-root non-leaf nodes

and m leaf nodes, we have k = 1 + (m − 1) + m = n − 1. In accordance with
(5.5), we obtain ρ ≤ 1 and thus ρ = 1. We arrive at the same conclusion that
(5.6) is valid.

Thereby, (5.3) and (5.6) are fulfilled. On account of kj ≥ 2 (1 ≤ j ≤ s), it
follows from (5.6) that kj = 2 (1 ≤ j ≤ s) and thus the statements (1)–(4) are
valid.

If either (B1), (B2), or (B3) holds, then obviously
⌊
k
2

⌋
=
⌊
n
2

⌋
for k defined

by (5.2). If (B4) holds, then n is odd and, for k defined by (5.2), we have⌊
k
2

⌋
=
⌊
n−1
2

⌋
=
⌊
n
2

⌋
. Hence, the statement (5) is valid. ut
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The following corollary indicates the necessary and sufficient conditions
providing equality in (1.4).

Corollary 2. Let U be a Morse potential with n critical points. The following
assertions are equivalent.

(a) The inequality (1.4) becomes equality.

(b) The rooted tree G(U) is a binary tree with k nodes, where k is defined
by (5.2).

(c) The rooted tree G(U) has k nodes, where k is defined by (5.2).

Proof. The assertion (b) is a consequence of (a) in view of Proposition 4. The
assertion (c) is a trivial consequence of (b). Let us prove that (c) implies (a).
Assume that the rooted tree G(U) has k nodes, where k is defined by (5.2).
On account of Proposition 3, we have

k = NNG,NT + nmin + 1. (5.7)

Suppose that either (B1), (B2), or (B3) hold; then, in view of (5.2) and (5.7),
we obtain NNG,NT = nmax − 1 =

⌊
n
2

⌋
− 1. Suppose that (B4) holds; then, in

view of (5.2) and (5.7), we obtain NNG,NT = nmax − 2 =
⌊
n
2

⌋
− 1. Thereby,

the inequality (1.4) becomes equality. ut

Remark 2. The condition that the rooted tree G(U) associated with a Morse
potential U is a binary tree is necessary but not sufficient for the inequality
(1.4) to become the equality.

Figure 2. A Morse potential U has six critical points and satisfies (B2). The function U
has four CS E1, E2, E3, and E4, which are nodes of the associated rooted tree G(U).

For example, the Morse potential U depicted in Figure 2 has n = 6 critical
points and satisfies (B2); the associated rooted tree G(U) is a binary tree with
k = 5 nodes. Since (5.2) is not fulfilled, it follows from Corollary 2 that the
inequality (1.4) is strict.

Let k be an integer greater than one and let s stand for
⌊
k
2

⌋
− 1. Based on

Proposition 4, to every k, we associate a binary tree Tk as follows. Consider
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a binary tree T ′s+2 with s + 2 nodes and the depth s + 1. Then, T ′s+2 has s
non-root non-leaf nodes and one leaf node. Add a leaf node to each non-root
non-leaf node of T ′s+2 and add a leaf node to the root of T ′s+2 if k is odd. The

binary tree Tk obtained has k nodes,
⌊
k
2

⌋
− 1 non-root non-leaf nodes, and

⌈
k
2

⌉
leaf nodes, see Figure 3. We see that depth(Tk) = depth(T ′s+2) =

⌊
k
2

⌋
and

every non-root non-leaf node in Tk has two child nodes. Among binary trees
with k nodes, Tk provides an example of a binary tree that has the minimum
number

⌊
k
2

⌋
of non-leaf nodes, see [19, p. 216], and the maximum number

⌈
k
2

⌉
of leaf nodes, see [19, p. 217].

Let us prove Theorem 2.

Proof. The idea of proof is to define a Morse potential U with n critical points
in such a way that the associated rooted tree G(U) is a binary tree Tk, where
k is defined by (5.2). Taking into account Corollary 2 and the properties of
Tk described above, the Morse potential U will provide the maximum number⌊
n
2

⌋
− 1 of nonglobal nontrivial period annuli for (1.1),

NNG,NT = bn/2c − 1. (5.8)

Consider functions pσ(x) := σ
(
x− sin 2x

)
,

hσ,a(α;x) := a(x3 − α3)− 3axα(x− α) + σx− 2σ(x− α) cos(2α)− σ sin(2α),

where σ, a ∈ {−1, 1} and α ∈ R are parameters. Next, we define three Morse
potentials U1, U2, and U3 with n critical points C2-smoothly gluing pσ(x) and
two copies of hσ,a(α;x) at some inflections points πn

2 (n ∈ Z) of pσ(x) in such
a way that U1, U2, and U3 satisfy (B1), (B2), and (B3), respectively, and
G(Ui) = Tn, i ∈ {1, 2, 3}. Then, it follows from the above discussion that (5.8)
is fulfilled.

Case 1. Suppose n = 2m+ 1, where m ≥ 1. The function

U1(x) :=


h1,−1(0;x), if x ≤ 0,

p1(x), if 0 ≤ x ≤ πn
2 ,

h1,1
(
πn
2 ;x

)
, if x ≥ πn

2 ,

(5.9)

has n critical points and satisfies (A) and (B1). We have nmin = m + 1 and

nmax = m. The function U1 has the local maxima U1

(
−π6 + πj

)
=
√
3
2 −

π
6 +πj

(1 ≤ j ≤ m). Since U1

(
−π6 + π

)
< · · · < U1

(
−π6 + πm

)
, we see that G(U1) =

Tn and thus (5.8) is fulfilled. (The graph of the function U1 if n = 11 is depicted
in Figure 4 (a); the rooted tree G(U1) = T11 if n = 11 is depicted in Figure 3.)

Case 2. Suppose n = 2m, where m ≥ 2. The function

U2(x) :=


h−1,1(0;x), if x ≤ 0,

p−1(x), if 0 ≤ x ≤ πn
2 ,

h−1,1
(
πn
2 ;x

)
, if x ≥ πn

2 ,

(5.10)

has n critical points and satisfies (A) and(B2). We have nmin = m and nmax =

m. The function U2 has the local maxima U2

(
π
6 + πj

)
=
√
3
2 −

π
6 − πj (0 ≤
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Figure 3. Binary trees Tk (2 ≤ k ≤ 11).

j ≤ m− 1). Since U2

(
π
6

)
> · · · > U2

(
π
6 + π(m− 1)

)
, we see that G(U2) = Tn

and thus (5.8) is fulfilled. (The graph of the function U2 if n = 10 is depicted
in Figure 4 (b); the rooted tree G(U2) = T10 if n = 10 is depicted in Figure 3.)
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(a) The graph of the function U1 defined
by (5.9) if n = 11.
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(b) The graph of the function U2 defined
by (5.10) if n = 10.

-5 5 10 15
x

-10

-5

5

10

15

UHxL

(c) The graph of the function U3 := −U2,
where U2 is defined by (5.10), if n =

10.
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(d) The graph of the function U4 defined
by (5.11) if n = 11.

Figure 4. Illustration to the proof of Theorem 2.

Case 3. Suppose n = 2m, where m ≥ 2. The function U3 := −U2, where
U2 is defined by (5.10), has n critical points and satisfies (A) and (B3). By
the similar arguments as in Case 2, we conclude that (5.8) is fulfilled. (The
graph of the function U3 if n = 10 is depicted in Figure 4 (c); the rooted tree
G(U3) = T10 if n = 10 is depicted in Figure 3.)

Case 4. Suppose n = 2m+ 1, where m ≥ 2. Consider a function

gb(β;x) :=b(x3 − β3)− 3bxβ(x− β)−
(
2x2 − 4xβ + 2β2 − 1

)
sin(2β)

+ 2(x− β) cos(2β)− x,
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where b and β are real parameters. The function

U4(x) :=


h−1,1(0;x), if x ≤ 0,

p−1(x), if 0 ≤ x ≤ −π6 + πm,

gb
(
−π6 + πm;x

)
, if x ≥ −π6 + πm,

(5.11)

where b := − 1√
2+2πm

, C2-smoothly glues together the three functions at the

inflection point x = 0 and the local minimum point β = −π6 + πm of p−1(x)
in such a way that U4 has n critical points and satisfies (A) and (B4). We
have nmin = m and nmax = m + 1. The function U4 has the local maxima
U4

(
π
6 + πj

)
=
√
3
2 −

π
6 −πj (0 ≤ j ≤ m−1) and U4(δ) = 4

√
3

9b2 −
√
3
2 + π

6 −πm,

where δ = πm− π
6 −

2
√
3

3b > π
6 + π(m− 1). Since

U4(δ) > 1 > U4

(π
6

)
> 0 > U

(π
6

+ π
)
> · · · > U

(π
6

+ π(m− 1)
)
,

we see that G(U4) = Tn−1 and thus (5.8) is fulfilled. (The graph of the function
U4 if n = 11 is depicted in Figure 4 (d); the rooted tree G(U4) = T10 if n = 11
is depicted in Figure 3.)

The proof is complete. ut

Corollary 3. Let U be a Morse potential with n critical points. The maximum
number of all period annuli for (1.1) is equal to n if (B1) is valid, n−1 if either
(B2) or (B3) is valid, and n− 2 if (B4) is valid.

Proof. It follows from Theorem 2 and Corollary 1 that the functions Ui,
i ∈ {1, 2, 3, 4}, considered in the proof of Theorem 2, provide the maximum
number of all period annuli for (1.1) indicated in the statement. ut

Remark 3. There exist Morse potentials U with n critical points such that the
inequality (1.4) becomes equality, and the rooted tree G(U) is a binary tree
different from Tk, where k is defined by (5.2).

Figure 5. A Morse potential U(x) = 1
100

(14− x2)(x2 − 9)(x2 − 4)2(x2 − 1)
and the associated rooted tree G(U).
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For example, let us consider a Morse potential U(x) = 1
100 (14 − x2)(x2 −

9)(x2 − 4)2(x2 − 1), which has n = 9 critical points and satisfies the condition
(B4). The rooted tree G(U), see Figure 5, is a binary tree different from T8
since depth

(
G(U)

)
= 3 and depth(T8) = 4. The binary tree G(U) has three

non-root non-leaf nodes E1, E2, and E3 and consequently the inequality (1.4)
becomes equality.

6 Conclusions

In our paper, we consider a second order scalar differential equation with a
Morse potential. We present the upper bound for the number of nonglobal
nontrivial period annuli for the equation and, as a consequence, the upper
bound for the number of all period annuli for the equation. We prove that these
bounds are sharp, indicating examples of Morse potentials. In our reasoning,
we assign a rooted tree to each Morse potential. The associated with Morse
potentials rooted trees have at least three nodes, and every non-root non-leaf
node, if any exists, has at least two child nodes. In further research, it would
be interesting (a) to describe the Morse potentials with a given rooted tree,
(b) to investigate the maximum number of period annuli for potentials with a
finite limit at minus or plus infinity.
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