AGGREGATION OPERATORS AND T-NORM BASED OPERATIONS WITH L-FUZZY REAL NUMBERS

PAVELS ORLOVS

University of Latvia, Department of Mathematics
Zellu street 8, Riga, LV-1002, Latvia
E-mail: pavelsorl@gmail.com

Our work deals with a fuzzy analogue of a real number. In the literature on fuzzy mathematics one can find several different schemes for defining fuzzy numbers. We consider the notion originating from B. Hutton paper [1] and later developed by several authors.

Let \(L = (L, \wedge, \vee) \) be a completely distributive lattice with lower and upper bounds \(0_L, 1_L \in L \). An \(L \)-fuzzy real number is a function \(z : \mathbb{R} \to L \) such that

(i) \(z \) is non-increasing;
(ii) \(\bigwedge_{x} z(x) = 0_L, \bigvee_{x} z(x) = 1_L \);
(iii) \(z \) is left semi-continuous, i.e. \(\bigwedge_{t < x} z(t) = z(x) \).

The set of all fuzzy real numbers is called the fuzzy real line and is denoted by \(\mathbb{R}(L) \). The operations of \(L \)-fuzzy addition and \(L \)-fuzzy multiplication as they are defined in [2] are jointly continuous extensions of addition and multiplication from the real line \(\mathbb{R} \) to the \(L \)-fuzzy real line \(\mathbb{R}(L) \).

The aim of this talk is to present alternative definitions for arithmetic operations with \(L \)-fuzzy numbers which are based on a triangular norm (recall that a triangular norm, or a \(t \)-norm for short, is an associative, commutative binary operation on a lattice \(L \) which is non-decreasing in each argument and has the neutral element \(1_L \) [3]). For this aim we use the \(t \)-norm extension \(\hat{A} \) of an aggregation operator \(A \) which is defined by the following formula [4]:

\[
\hat{A}(z_1, \ldots, z_n)(x) = \bigvee_{x = A(x_1, \ldots, x_n)} T(z_1(x_1), \ldots, z_n(x_n)),
\]

where \(z_1, \ldots, z_n \in \mathbb{R}(L), x_1, \ldots, x_n \in \mathbb{R} \) and \(T \) is a \(t \)-norm. Basic algebraic properties of these arithmetic operations are discussed. Examples illustrating the role of a \(t \)-norm in the definition of operations are given. In particular we consider the cases of minimum, product and Lukasiewicz \(t \)-norms.

REFERENCES